Error occured ! We are notified and will try and resolve this as soon as possible.
WARNING! [2] file_put_contents(/home/myedu/domains/myeducationpath.com/app/../html/cache/memory/course_22798_0_e086762d743c0218beb85ea6e1b456cae.txt): Failed to open stream: No such file or directory . Line 75 in file /home/myedu/domains/myeducationpath.com/html/include/class.cache.php. Continue execution. 1151364; index.php; 18.191.21.86; GET; url=courses/22798/introduction-to-state-space-control.htm&; ; Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com); ; Executon time: 0 MyEducationPath.com :: edX : Introduction to State Space Control

Introduction to State Space Control

0 votes
Free Closed [?]
Introduction to State Space Control

The "sense-and-correct" nature of feedback controllers make them an appealing choice for systems whose actuators, or environments, are highly variable. If the system also requires high performance (e.g. an industrial robot, a car, or an aircraft), the usual approach is to use a state-space feedback controller derived from a physics-based model. And when performance is less critical (e.g. for toys and appliances), the traditional choice has been to tune a low-cost proportional-derivative-integral (PID) controller.



Over the last few years, much has changed. The dramatic decline in the cost of accurate sensors and fast microcontrollers have made state-space controllers practical even for inexpensive toys. In addition, modeling approaches have become far more reliant on measurement and computation rather than physics and analysis. In this course, we examine the theory and application of this arc of alternatives to control, starting with PID, then moving to physical-modeling and state-space, and ending with state-space using measurement-based modeling. In each case, you will design and test controllers with your own copter-levitated arm, to solidify your understanding and to gain insight in to the practical issues.



PLEASE NOTE: This is intended to be an advanced course and students should have a background in linear algebra and differential equations, as well as some experience with control systems. IN ADDITION: THIS IS A BETA COURSE, THINGS WILL GO WRONG. We are testing a new type of on-line class, one where students use advanced concepts to design and then examine performance results on their own hardware. There will be difficulties, and we will be updating content and focus in response to student input.


Categories:
Starts : 2016-08-01

Comments

Alternatives

-- no alternatives found for the course --
If you know any alternatives, please let us know.

Prerequisites

-- no prerequsites found for the course --
If you can suggest any prerequisite, please let us know.

Paths

No Paths inclusing the course. You can build and share a path with this course included.

Certification Exams

-- there are no exams to get certification after this course --
If your company does certification for those who completed this course then register your company as certification vendor and add your exams to the Exams Directory.

Let us know when you did the course Introduction to State Space Control.

Started on: Completed on:
Your grade (if any):
Comments:

Add the course Introduction to State Space Control to My Personal Education Path.

Start the course on:
Duration of study:
Notes:

Successfully added to your path.

View your path

Select what exam to connect to the course. The course will be displayed on the exam page in the list of courses supported for certification with the exam.


Notes about how the exam certifies students of the course (optional):