Online courses directory (423)

Sort by: Name, Rating, Price
Start time: Any, Upcoming, Recent started, New, Always Open
Price: Any, Free, Paid
90 votes
Khan Academy Free Closed [?] Life Sciences Advanced Anatomy Anatomy & Physiology Biology Biology & Life Sciences Human biology Science

The Lungs and Pulmonary System. Red blood cells. Circulatory System and the Heart. Hemoglobin. Anatomy of a Neuron. Sodium Potassium Pump. Correction to Sodium and Potassium Pump Video. Electrotonic and Action Potentials. Saltatory Conduction in Neurons. Neuronal Synapses (Chemical). Myosin and Actin. Tropomyosin and troponin and their role in regulating muscle contraction. Role of the Sarcoplasmic Reticulum in Muscle Cells. Anatomy of a muscle cell. The Kidney and Nephron. Secondary Active Transport in the Nephron. The Lungs and Pulmonary System. Red blood cells. Circulatory System and the Heart. Hemoglobin. Anatomy of a Neuron. Sodium Potassium Pump. Correction to Sodium and Potassium Pump Video. Electrotonic and Action Potentials. Saltatory Conduction in Neurons. Neuronal Synapses (Chemical). Myosin and Actin. Tropomyosin and troponin and their role in regulating muscle contraction. Role of the Sarcoplasmic Reticulum in Muscle Cells. Anatomy of a muscle cell. The Kidney and Nephron. Secondary Active Transport in the Nephron.

106 votes
Khan Academy Free Closed [?] Life Sciences Biology Immunology

Role of Phagocytes in Innate or Nonspecific Immunity. Types of immune responses: Innate and Adaptive. Humoral vs. Cell-Mediated. B Lymphocytes (B cells). Professional Antigen Presenting Cells (APC) and MHC II complexes. Helper T Cells. Cytotoxic T Cells. Review of B cells, CD4+ T cells and CD8+ T cells. Inflammatory Response. Role of Phagocytes in Innate or Nonspecific Immunity. Types of immune responses: Innate and Adaptive. Humoral vs. Cell-Mediated. B Lymphocytes (B cells). Professional Antigen Presenting Cells (APC) and MHC II complexes. Helper T Cells. Cytotoxic T Cells. Review of B cells, CD4+ T cells and CD8+ T cells. Inflammatory Response.

302 votes
Khan Academy Free Popular Closed [?] Life Sciences Biology Photosynthesis

ATP: Adenosine Triphosphate. Photosynthesis. Photosynthesis: Light Reactions 1. Photosynthesis: Light Reactions and Photophosphorylation. Photosynthesis: Calvin Cycle. Photorespiration. C-4 Photosynthesis. CAM Plants. ATP: Adenosine Triphosphate. Photosynthesis. Photosynthesis: Light Reactions 1. Photosynthesis: Light Reactions and Photophosphorylation. Photosynthesis: Calvin Cycle. Photorespiration. C-4 Photosynthesis. CAM Plants.

96 votes
Khan Academy Free Closed [?] Life Sciences Biology Tree of life

Taxonomy and the Tree of Life. Species. Bacteria. Viruses. Human Prehistory 101: Prologue. Human Prehistory 101 Part 1: Out of (Eastern) Africa. Human Prehistory 101 Part 2: Weathering The Storm. Human Prehistory 101 Part 3: Agriculture Rocks Our World. Human Prehistory 101: Epilogue. Taxonomy and the Tree of Life. Species. Bacteria. Viruses. Human Prehistory 101: Prologue. Human Prehistory 101 Part 1: Out of (Eastern) Africa. Human Prehistory 101 Part 2: Weathering The Storm. Human Prehistory 101 Part 3: Agriculture Rocks Our World. Human Prehistory 101: Epilogue.

Starts : 2009-09-01
12 votes
MIT OpenCourseWare (OCW) Free Life Sciences Biological Engineering Graduate MIT OpenCourseWare

This course covers the principles of materials science and cell biology underlying the design of medical implants, artificial organs, and matrices for tissue engineering. Methods for biomaterials surface characterization and analysis of protein adsorption on biomaterials. Molecular and cellular interactions with biomaterials are analyzed in terms of unit cell processes, such as matrix synthesis, degradation, and contraction. Mechanisms underlying wound healing and tissue remodeling following implantation in various organs. Tissue and organ regeneration. Design of implants and prostheses based on control of biomaterials-tissue interactions. Comparative analysis of intact, biodegradable, and bioreplaceable implants by reference to case studies. Criteria for restoration of physiological function for tissues and organs.

Starts : 2013-09-01
No votes
MIT OpenCourseWare (OCW) Free Life Sciences Mechanical Engineering MIT OpenCourseWare Undergraduate

Biomimetics is based on the belief that nature, at least at times, is a good engineer. Biomimesis is the scientific method of learning new principles and processes based on systematic study, observation and experimentation with live animals and organisms. This Freshman Advising Seminar on the topic is a way for freshmen to explore some of MIT's richness and learn more about what they may want to study in later years.

Starts : 2004-09-01
9 votes
MIT OpenCourseWare (OCW) Free Life Sciences Biological Engineering Graduate MIT OpenCourseWare

This subject deals primarily with kinetic and equilibrium mathematical models of biomolecular interactions, as well as the application of these quantitative analyses to biological problems across a wide range of levels of organization, from individual molecular interactions to populations of cells.

Starts : 2002-02-01
24 votes
MIT OpenCourseWare (OCW) Free Closed [?] Life Sciences Brain and Cognitive Sciences MIT OpenCourseWare Undergraduate

Consists of a series of hands-on laboratories designed to give students experience with common techniques for conducting neuroscience research. Included are sessions on anatomical, ablation, neurophysiological, and computer modeling techniques, and ways these techniques are used to study brain function. Each session consists of a brief quiz on assigned readings that provide background to the lab, a lecture that expands on the readings, and that week's laboratory. Lab reports required. Students receive training in the art of scientific writing and oral presentation with feedback designed to improve writing and speaking skills. Assignments include two smaller lab reports, one major lab report with revision, and an oral report.

Starts : 2005-09-01
16 votes
MIT OpenCourseWare (OCW) Free Life Sciences Graduate Health Sciences and Technology MIT OpenCourseWare

An advanced course covering anatomical, physiological, behavioral, and computational studies of the central nervous system relevant to speech and hearing. Students learn primarily by discussions of scientific papers on topics of current interest. Recent topics include cell types and neural circuits in the auditory brainstem, organization and processing in the auditory cortex, auditory reflexes and descending systems, functional imaging of the human auditory system, quantitative methods for relating neural responses to behavior, speech motor control, cortical representation of language, and auditory learning in songbirds.

Starts : 2014-02-01
8 votes
MIT OpenCourseWare (OCW) Free Life Sciences Brain and Cognitive Sciences MIT OpenCourseWare Undergraduate

This course provides an outline of vertebrate functional neuroanatomy, aided by studies of comparative neuroanatomy and evolution, and by studies of brain development. Topics include early steps to a central nervous system, basic patterns of brain and spinal cord connections, regional development and differentiation, regeneration, motor and sensory pathways and structures, systems underlying motivations, innate action patterns, formation of habits, and various cognitive functions. In addition, lab techniques are reviewed and students perform brain dissections.

Starts : 2013-10-04
41 votes
Coursera Free Life Sciences English Biology & Life Sciences Health & Society Medicine

This course will help anyone who loves dogs to better understand their dog’s reproductive health and how to control its reproduction. This includes understanding the pros and cons of having your dog spayed or castrated, and understanding at what age that surgery can be performed.

Starts : 2008-02-01
20 votes
MIT OpenCourseWare (OCW) Free Life Sciences Brain and Cognitive Sciences Graduate MIT OpenCourseWare

This course explores the major areas of cellular and molecular neurobiology, including excitable cells and membranes, ion channels and receptors, synaptic transmission, cell-type determination, axon guidance, neuronal cell biology, neurotrophin signaling and cell survival, synapse formation and neural plasticity. Material includes lectures and exams, and involves presentation and discussion of primary literature. It focuses on major concepts and recent advances in experimental neuroscience.

Starts : 2007-02-01
12 votes
MIT OpenCourseWare (OCW) Free Life Sciences Biology MIT OpenCourseWare Undergraduate

This course deals with the biology of cells of higher organisms: The structure, function, and biosynthesis of cellular membranes and organelles; cell growth and oncogenic transformation; transport, receptors, and cell signaling; the cytoskeleton, the extracellular matrix, and cell movements; chromatin structure and RNA synthesis.

Starts : 2010-02-01
10 votes
MIT OpenCourseWare (OCW) Free Life Sciences Biology Graduate MIT OpenCourseWare

The goal of this course is to teach both the fundamentals of nuclear cell biology as well as the methodological and experimental approaches upon which they are based. Lectures and class discussions will cover the background and fundamental findings in a particular area of nuclear cell biology. The assigned readings will provide concrete examples of the experimental approaches and logic used to establish these findings. Some examples of topics include genome and systems biology, transcription, and gene expression.

Starts : 2014-09-01
13 votes
MIT OpenCourseWare (OCW) Free Life Sciences Graduate Mechanical Engineering MIT OpenCourseWare

Mechanical forces play a decisive role during development of tissues and organs, during remodeling following injury as well as in normal function. A stress field influences cell function primarily through deformation of the extracellular matrix to which cells are attached. Deformed cells express different biosynthetic activity relative to undeformed cells. The unit cell process paradigm combined with topics in connective tissue mechanics form the basis for discussions of several topics from cell biology, physiology, and medicine.

Starts : 2000-02-01
14 votes
MIT OpenCourseWare (OCW) Free Life Sciences Brain and Cognitive Sciences Graduate MIT OpenCourseWare

Life as an emergent property of networks of chemical reactions involving proteins and nucleic acids. Mathematical theories of metabolism, gene regulation, signal transduction, chemotaxis, excitability, motility, mitosis, development, and immunity. Applications to directed molecular evolution, DNA computing, and metabolic and genetic engineering.

Starts : 2005-09-01
14 votes
MIT OpenCourseWare (OCW) Free Life Sciences Graduate Health Sciences and Technology MIT OpenCourseWare

This course covers cells and tissues of the immune system, lymphocyte development, the structure and function of antigen receptors, the cell biology of antigen processing and presentation, including molecular structure and assembly of MHC molecules, the biology of cytokines, leukocyte-endothelial interactions, and the pathogenesis of immunologically mediated diseases. The course is structured as a series of lectures and tutorials in which clinical cases are discussed with faculty tutors.

Lecturers

Frederick W. Alt

Marcus Altfeld

Paul Anderson

Jon C. Aster

Hugh Auchincloss

Steven P. Balk

Samuel M. Behar

Richard S. Blumberg

Francisco Bonilla

Bobby Cherayil

Benjamin Davis

David Hafler

Nir Harcohen

Bruce Horwitz

David M. Lee

Andrew Lichtman

Diane Mathis

Richard Mitchell

Hidde Ploegh

Emmett Schmidt

Arlene Sharpe

Megan Sykes

Shannon Turley

Dale T. Umetsu

Ulrich von Andrian

Bruce Walker

Kai Wucherpfennig

Ramnik Xavier

Sarah Henrickson



Other Versions

Other OCW Versions

Archived versions: Question_avt logo

Related Content

Starts : 2012-02-01
17 votes
MIT OpenCourseWare (OCW) Free Life Sciences Biology MIT OpenCourseWare Undergraduate

This course serves as an introduction to the structure and function of the nervous system. Emphasis is placed on the cellular properties of neurons and other excitable cells. Topics covered include the structure and biophysical properties of excitable cells, synaptic transmission, neurochemistry, neurodevelopment, and the integration of information in simple systems and the visual system.

Starts : 2002-02-01
21 votes
MIT OpenCourseWare (OCW) Free Life Sciences Brain and Cognitive Sciences MIT OpenCourseWare Undergraduate

This course includes:

  • Surveying the molecular and cellular mechanisms of neuronal communication.
  • Coversion channels in excitable membrane, synaptic transmission, and synaptic plasticity.
  • Correlation of the properties of ion channels and synaptic transmission with their physiological function such as learning and memory.
  • Discussion of the organizational principles for the formation of functional neural networks at synaptic and cellular levels.

Related Content