Online courses directory (81)

Sort by: Name, Rating, Price
Start time: Any, Upcoming, Recent started, New, Always Open
Price: Any, Free, Paid
14 votes
ALISON Free Physical Sciences

Calculating change in motion is a very important concept to master in physics. When change happens in one dimension it is relatively easy to calculate the variable. However, change rarely happens in just one direction so you need to learn how to manage more than one variable. This free online physics course explains how to visually represent each change in a dimension as a vector so that it can be easily understood. You will learn how to add two vectors together and calculate all the relevant information for the resulting third vector. Working through various examples, including different elevations and inclines, you will learn how to solve for any variable through the use of the right-angled triangle and then use trigonometry and quadratic equations to calculate the relevant variables. This free online physics course will be of great interest to students who are studying physics, chemistry, engineering and mathematics and to any individual who wants to learn more about the movement of objects in two dimensions.<br />

13 votes
ALISON Free Physical Sciences

In physics the study of movement and the motion of objects is called kinematics and is a branch of mechanics. The study of the motion of objects focuses on topics such as acceleration, position and velocity. In this free online course you will investigate the movement of objects by looking at the real-world application of kinematics. You will see how to answer interesting questions such as what distance does the Airbus A380 need for take-off, how long it takes for an FA-18 Hornet to take off from an aircraft carrier, and do race cars accelerate when cornering even if travelling at a constant speed. The course will walk you through a number of formulae, demystifying them by explaining and rearranging them in a clear and easy to understand way. This course will be of great interest to students who are studying physics, chemistry, engineering and mathematics, to students who wish to pursue a career in any of the sciences or engineering fields, and to the learner who wants to see how science can answer real-world questions.<br />

12 votes
ALISON Free Life Sciences

Motion, speed and time are three fundamental concepts in basic physics and they are important building blocks for understanding more advanced topics. This free online course introduces you to how distance, speed, time and mass are combined to give displacement, velocity, force and acceleration. Newton’s 3 Laws of Motion, which are the bedrock of much of our understanding of physics today, are also introduced and explained in a clear and concise manner. Along with explanations of the formulae used, a number of examples are worked through, giving a full understanding of the subject. References are also made as to how these formulae are used in real-world situations. By studying this course you will gain a clearer knowledge and understanding of important topics in basic physics. This course will be of great interest to students who are studying physics, chemistry, engineering, mathematics and some medical sciences, and to students who wish to pursue a career in any of the sciences or engineering fields, and to the individual who wants to understand how the world around us works.<br />

8 votes
ALISON Free Physical Sciences

Understanding the concept of force and the effects various forces have on objects are very important topics in physics. For example, when you try to move a heavy object it takes more effort to get it moving than to keep it moving because of gravity and the different types of friction involved. In this free online physics course you will learn more about the force of gravity and its counterpart the normal force, and why some objects do not move even when they are on a slope. The force of friction is also discussed, including static and kinetic types, and as friction is dependent on types of the materials involved the course also looks at the coefficient of static friction relative to kinetic friction. Examples of each type of force are worked through giving the learner a clear insight into how forces work together and how to calculate their respective values. This free online physics course will be of great interest to students who are studying physics, chemistry, engineering and mathematics, to students who wish to pursue a career in any of the sciences or engineering fields, and to anybody wanting to understand the dynamics of moving objects on specific surfaces.<br />

3 votes
Open.Michigan Initiative, University of Michigan Free Physical Sciences Calculus I Foreign Language Italian Language and Literature Lancaster University Mechanisms of organic chemical reactions Navigation+SAP

Physics 140 offers introduction to mechanics, the physics of motion. Topics include: linear motion, vectors, projectiles, relative velocity and acceleration, Newton's laws, particle dynamics, work and energy, linear momentum, torque, angular momentum, gravitation, planetary motion, fluid statics and dynamics, simple harmonic motion, waves and sound. Course Level: Undergraduate This Work, Physics 140 - General Physics 1, by Gus Evrard is licensed under a Creative Commons Attribution license.

20 votes
Udemy Free Closed [?] Life Sciences Calculus I Foreign Language Histology Home Italian Language and Literature Lancaster University

This course provides a thorough introduction to the principles and methods of physics for students who have good prepara

317 votes
Khan Academy Free Popular Closed [?] Mathematics Accessible Websites Calculus I Class2Go Design.htm%25252525253Fdatetype%25252525253Dupcoming&.htm%252525253Fcategoryid%252525253D10.htm%2525 Undergraduate.htm%2525252525253Fstart%2525252525253D1400&limit%2525252525253D20.htm%25252525253Fsort

Electrostatics (part 1): Introduction to Charge and Coulomb's Law. Electrostatics (part 2). Proof (Advanced): Field from infinite plate (part 1). Proof (Advanced): Field from infinite plate (part 2). Electric Potential Energy. Electric Potential Energy (part 2-- involves calculus). Voltage. Capacitance. Circuits (part 1). Circuits (part 2). Circuits (part 3). Circuits (part 4). Cross product 1. Cross Product 2. Cross Product and Torque. Introduction to Magnetism. Magnetism 2. Magnetism 3. Magnetism 4. Magnetism 5. Magnetism 6: Magnetic field due to current. Magnetism 7. Magnetism 8. Magnetism 9: Electric Motors. Magnetism 10: Electric Motors. Magnetism 11: Electric Motors. Magnetism 12: Induced Current in a Wire. The dot product. Dot vs. Cross Product. Calculating dot and cross products with unit vector notation. Electrostatics (part 1): Introduction to Charge and Coulomb's Law. Electrostatics (part 2). Proof (Advanced): Field from infinite plate (part 1). Proof (Advanced): Field from infinite plate (part 2). Electric Potential Energy. Electric Potential Energy (part 2-- involves calculus). Voltage. Capacitance. Circuits (part 1). Circuits (part 2). Circuits (part 3). Circuits (part 4). Cross product 1. Cross Product 2. Cross Product and Torque. Introduction to Magnetism. Magnetism 2. Magnetism 3. Magnetism 4. Magnetism 5. Magnetism 6: Magnetic field due to current. Magnetism 7. Magnetism 8. Magnetism 9: Electric Motors. Magnetism 10: Electric Motors. Magnetism 11: Electric Motors. Magnetism 12: Induced Current in a Wire. The dot product. Dot vs. Cross Product. Calculating dot and cross products with unit vector notation.

90 votes
Khan Academy Free Closed [?] Physical Sciences Calculus I Class2Go Forensic science

Fluids (part 1). Fluids (part 2). Fluids (part 3). Fluids (part 4). Fluids (part 5). Fluids (part 6). Fluids (part 7). Fluids (part 8). Fluids (part 9). Fluids (part 10). Fluids (part 11). Fluids (part 12). Fluids (part 1). Fluids (part 2). Fluids (part 3). Fluids (part 4). Fluids (part 5). Fluids (part 6). Fluids (part 7). Fluids (part 8). Fluids (part 9). Fluids (part 10). Fluids (part 11). Fluids (part 12).

46 votes
Khan Academy Free Closed [?] Physical Sciences Calculus I Class2Go Intermediate Programming

Classical gravity. How masses attract each other (according to Newton). Introduction to Gravity. Mass and Weight Clarification. Gravity for Astronauts in Orbit. Would a Brick or Feather Fall Faster. Acceleration Due to Gravity at the Space Station. Space Station Speed in Orbit. Introduction to Newton's Law of Gravitation. Gravitation (part 2). Introduction to Gravity. Mass and Weight Clarification. Gravity for Astronauts in Orbit. Would a Brick or Feather Fall Faster. Acceleration Due to Gravity at the Space Station. Space Station Speed in Orbit. Introduction to Newton's Law of Gravitation. Gravitation (part 2).

52 votes
Khan Academy Free Closed [?] Physical Sciences Calculus I Class2Go Game theory and Nash equilibrium

Linear momentum. Conservation of momentum. Elastic collisions. Introduction to Momentum. Momentum: Ice skater throws a ball. 2-dimensional momentum problem. 2-dimensional momentum problem (part 2). Introduction to Momentum. Momentum: Ice skater throws a ball. 2-dimensional momentum problem. 2-dimensional momentum problem (part 2).

87 votes
Khan Academy Free Closed [?] Mathematics Calculus I Class2Go Foreign Language

Relationship between angular velocity and speed. Why Distance is Area under Velocity-Time Line. Introduction to Vectors and Scalars. Calculating Average Velocity or Speed. Solving for Time. Displacement from Time and Velocity Example. Acceleration. Balanced and Unbalanced Forces. Unbalanced Forces and Motion. Newton's First Law of Motion. Newton's First Law of Motion Concepts. Newton's First Law of Motion. Newton's Second Law of Motion. Newton's Third Law of Motion. Airbus A380 Take-off Time. Airbus A380 Take-off Distance. Average Velocity for Constant Acceleration. Acceleration of Aircraft Carrier Takeoff. Race Cars with Constant Speed Around Curve. Introduction to Gravity. Mass and Weight Clarification. Gravity for Astronauts in Orbit. Would a Brick or Feather Fall Faster. Deriving Displacement as a Function of Time, Acceleration and Initial Velocity. Plotting Projectile Displacement, Acceleration, and Velocity. Projectile Height Given Time. Deriving Max Projectile Displacement Given Time. Impact Velocity From Given Height. Visualizing Vectors in 2 Dimensions. Projectile at an Angle. Different Way to Determine Time in Air. Launching and Landing on Different Elevations. Total Displacement for Projectile. Total Final Velocity for Projectile. Correction to Total Final Velocity for Projectile. Projectile on an Incline. Unit Vectors and Engineering Notation. Clearing the Green Monster at Fenway. Green Monster at Fenway Part 2. Optimal angle for a projectile part 1. Optimal angle for a projectile part 2 - Hangtime. Optimal angle for a projectile part 3 - Horizontal distance as a function of angle (and speed). Optimal angle for a projectile part 4 Finding the optimal angle and distance with a bit of calculus. Slow Sock on Lubricon VI. Normal Forces on Lubricon VI. Normal Force and Contact Force. Normal Force in an Elevator. Inclined Plane Force Components. Ice Accelerating Down an Incline. Force of Friction Keeping the Block Stationary. Correction to Force of Friction Keeping the Block Stationary. Force of Friction Keeping Velocity Constant. Intuition on Static and Kinetic Friction Comparisons. Static and Kinetic Friction Example. Introduction to Tension. Introduction to Tension (Part 2). Tension in an accelerating system and pie in the face. Introduction to Momentum. Momentum: Ice skater throws a ball. 2-dimensional momentum problem. 2-dimensional momentum problem (part 2). Introduction to work and energy. Work and Energy (part 2). Conservation of Energy. Work/Energy problem with Friction. Introduction to mechanical advantage. Mechanical Advantage (part 2). Mechanical Advantage (part 3). Center of Mass. Introduction to Torque. Moments. Moments (part 2). Unit Vector Notation. Unit Vector Notation (part 2). Projectile Motion with Ordered Set Notation. Projectile motion (part 1). Projectile motion (part 2). Projectile motion (part 3). Projectile motion (part 4). Projectile motion (part 5). Centripetal Force and Acceleration Intuition. Visual Understanding of Centripetal Acceleration Formula. Calculus proof of centripetal acceleration formula. Loop De Loop Question. Loop De Loop Answer part 1. Loop De Loop Answer part 2. Acceleration Due to Gravity at the Space Station. Space Station Speed in Orbit. Conservation of angular momentum. Introduction to Newton's Law of Gravitation. Gravitation (part 2). Viewing g as the value of Earth's Gravitational Field Near the Surface. Intro to springs and Hooke's Law. Potential energy stored in a spring. Spring potential energy example (mistake in math). Introduction to Harmonic Motion. Harmonic Motion Part 2 (calculus). Harmonic Motion Part 3 (no calculus).

51 votes
Khan Academy Free Closed [?] Physical Sciences Calculus I Class2Go General Education Geology and Geophysics

Thinking about making things rotate. Center of mass, torque, moments and angular velocity. Center of Mass. Introduction to Torque. Moments. Moments (part 2). Relationship between angular velocity and speed. Conservation of angular momentum. Center of Mass. Introduction to Torque. Moments. Moments (part 2). Relationship between angular velocity and speed. Conservation of angular momentum.

48 votes
Khan Academy Free Closed [?] Physical Sciences Calculus I Class2Go Online+SAP+training+in+Canada

In this tutorial we begin to explore ideas of velocity and acceleration. We do exciting things like throw things off of cliffs (far safer on paper than in real life) and see how high a ball will fly in the air. Introduction to Vectors and Scalars. Calculating Average Velocity or Speed. Solving for Time. Displacement from Time and Velocity Example. Acceleration. Airbus A380 Take-off Time. Airbus A380 Take-off Distance. Why Distance is Area under Velocity-Time Line. Average Velocity for Constant Acceleration. Acceleration of Aircraft Carrier Takeoff. Deriving Displacement as a Function of Time, Acceleration and Initial Velocity. Plotting Projectile Displacement, Acceleration, and Velocity. Projectile Height Given Time. Deriving Max Projectile Displacement Given Time. Impact Velocity From Given Height. Viewing g as the value of Earth's Gravitational Field Near the Surface. Projectile motion (part 1). Projectile motion (part 2). Projectile motion (part 3). Projectile motion (part 4). Projectile motion (part 5). Introduction to Vectors and Scalars. Calculating Average Velocity or Speed. Solving for Time. Displacement from Time and Velocity Example. Acceleration. Airbus A380 Take-off Time. Airbus A380 Take-off Distance. Why Distance is Area under Velocity-Time Line. Average Velocity for Constant Acceleration. Acceleration of Aircraft Carrier Takeoff. Deriving Displacement as a Function of Time, Acceleration and Initial Velocity. Plotting Projectile Displacement, Acceleration, and Velocity. Projectile Height Given Time. Deriving Max Projectile Displacement Given Time. Impact Velocity From Given Height. Viewing g as the value of Earth's Gravitational Field Near the Surface. Projectile motion (part 1). Projectile motion (part 2). Projectile motion (part 3). Projectile motion (part 4). Projectile motion (part 5).

48 votes
Khan Academy Free Closed [?] Physical Sciences Calculus I Class2Go Health & Society

Pendulums. Slinkies. You when you have to use the bathroom but it is occupied. These all go back and forth over and over and over again. This tutorial explores this type of motion. Introduction to Harmonic Motion. Harmonic Motion Part 2 (calculus). Harmonic Motion Part 3 (no calculus). Introduction to Harmonic Motion. Harmonic Motion Part 2 (calculus). Harmonic Motion Part 3 (no calculus).

115 votes
Khan Academy Free Closed [?] Physical Sciences Calculus I Class2Go Foreign Language Forex Italian Language and Literature Lancaster University

Thermodynamics (part 1). Thermodynamics (part 2). Thermodynamics (part 3). Thermodynamics (part 4). Thermodynamics (part 5). Macrostates and Microstates. Quasistatic and Reversible Processes. First Law of Thermodynamics/ Internal Energy. More on Internal Energy. Work from Expansion. PV-diagrams and Expansion Work. Proof: U=(3/2)PV or U=(3/2)nRT. Work Done by Isothermic Process. Carnot Cycle and Carnot Engine. Proof: Volume Ratios in a Carnot Cycle. Proof: S (or Entropy) is a valid state variable. Thermodynamic Entropy Definition Clarification. Reconciling Thermodynamic and State Definitions of Entropy. Entropy Intuition. Maxwell's Demon. More on Entropy. Efficiency of a Carnot Engine. Carnot Efficiency 2: Reversing the Cycle. Carnot Efficiency 3: Proving that it is the most efficient. Enthalpy. Heat of Formation. Hess's Law and Reaction Enthalpy Change. Gibbs Free Energy and Spontaneity. Gibbs Free Energy Example. More rigorous Gibbs Free Energy/ Spontaneity Relationship. A look at a seductive but wrong Gibbs/Spontaneity Proof. Stoichiometry Example Problem 1. Stoichiometry Example Problem 2. Limiting Reactant Example Problem 1. Empirical and Molecular Formulas from Stoichiometry. Example of Finding Reactant Empirical Formula. Stoichiometry of a Reaction in Solution. Another Stoichiometry Example in a Solution. Molecular and Empirical Forumlas from Percent Composition. Hess's Law Example. Thermodynamics (part 1). Thermodynamics (part 2). Thermodynamics (part 3). Thermodynamics (part 4). Thermodynamics (part 5). Macrostates and Microstates. Quasistatic and Reversible Processes. First Law of Thermodynamics/ Internal Energy. More on Internal Energy. Work from Expansion. PV-diagrams and Expansion Work. Proof: U=(3/2)PV or U=(3/2)nRT. Work Done by Isothermic Process. Carnot Cycle and Carnot Engine. Proof: Volume Ratios in a Carnot Cycle. Proof: S (or Entropy) is a valid state variable. Thermodynamic Entropy Definition Clarification. Reconciling Thermodynamic and State Definitions of Entropy. Entropy Intuition. Maxwell's Demon. More on Entropy. Efficiency of a Carnot Engine. Carnot Efficiency 2: Reversing the Cycle. Carnot Efficiency 3: Proving that it is the most efficient. Enthalpy. Heat of Formation. Hess's Law and Reaction Enthalpy Change. Gibbs Free Energy and Spontaneity. Gibbs Free Energy Example. More rigorous Gibbs Free Energy/ Spontaneity Relationship. A look at a seductive but wrong Gibbs/Spontaneity Proof. Stoichiometry Example Problem 1. Stoichiometry Example Problem 2. Limiting Reactant Example Problem 1. Empirical and Molecular Formulas from Stoichiometry. Example of Finding Reactant Empirical Formula. Stoichiometry of a Reaction in Solution. Another Stoichiometry Example in a Solution. Molecular and Empirical Forumlas from Percent Composition. Hess's Law Example.

58 votes
Khan Academy Free Closed [?] Physical Sciences Calculus I Class2Go Hypertension

You understand velocity and acceleration well in one-dimension. Now we can explore scenarios that are even more fun. With a little bit of trigonometry (you might want to review your basic trig, especially what sin and cos are), we can think about whether a baseball can clear the "green monster" at Fenway Park. Visualizing Vectors in 2 Dimensions. Projectile at an Angle. Different Way to Determine Time in Air. Launching and Landing on Different Elevations. Total Displacement for Projectile. Total Final Velocity for Projectile. Correction to Total Final Velocity for Projectile. Projectile on an Incline. Unit Vectors and Engineering Notation. Clearing the Green Monster at Fenway. Green Monster at Fenway Part 2. Unit Vector Notation. Unit Vector Notation (part 2). Projectile Motion with Ordered Set Notation. Optimal angle for a projectile part 1. Optimal angle for a projectile part 2 - Hangtime. Optimal angle for a projectile part 3 - Horizontal distance as a function of angle (and speed). Optimal angle for a projectile part 4 Finding the optimal angle and distance with a bit of calculus. Race Cars with Constant Speed Around Curve. Centripetal Force and Acceleration Intuition. Visual Understanding of Centripetal Acceleration Formula. Calculus proof of centripetal acceleration formula. Loop De Loop Question. Loop De Loop Answer part 1. Loop De Loop Answer part 2. Visualizing Vectors in 2 Dimensions. Projectile at an Angle. Different Way to Determine Time in Air. Launching and Landing on Different Elevations. Total Displacement for Projectile. Total Final Velocity for Projectile. Correction to Total Final Velocity for Projectile. Projectile on an Incline. Unit Vectors and Engineering Notation. Clearing the Green Monster at Fenway. Green Monster at Fenway Part 2. Unit Vector Notation. Unit Vector Notation (part 2). Projectile Motion with Ordered Set Notation. Optimal angle for a projectile part 1. Optimal angle for a projectile part 2 - Hangtime. Optimal angle for a projectile part 3 - Horizontal distance as a function of angle (and speed). Optimal angle for a projectile part 4 Finding the optimal angle and distance with a bit of calculus. Race Cars with Constant Speed Around Curve. Centripetal Force and Acceleration Intuition. Visual Understanding of Centripetal Acceleration Formula. Calculus proof of centripetal acceleration formula. Loop De Loop Question. Loop De Loop Answer part 1. Loop De Loop Answer part 2.

124 votes
Khan Academy Free Closed [?] Physical Sciences Calculus I Class2Go Foreign Language FullbridgeX Italian Language and Literature Lancaster University

Introduction to Waves. Amplitude, Period, Frequency and Wavelength of Periodic Waves. Introduction to the Doppler Effect. Doppler effect formula when source is moving away. When the source and the wave move at the same velocity. Mach Numbers. Specular and Diffuse Reflection. Specular and Diffuse Reflection 2. Refraction and Snell's Law. Refraction in Water. Snell's Law Example 1. Snell's Law Example 2. Total Internal Reflection. Virtual Image. Parabolic Mirrors and Real Images. Parabolic Mirrors 2. Convex Parabolic Mirrors. Convex Lenses. Convex Lens Examples. Doppler effect formula for observed frequency. Concave Lenses. Object Image and Focal Distance Relationship (Proof of Formula). Object Image Height and Distance Relationship. Introduction to Waves. Amplitude, Period, Frequency and Wavelength of Periodic Waves. Introduction to the Doppler Effect. Doppler effect formula when source is moving away. When the source and the wave move at the same velocity. Mach Numbers. Specular and Diffuse Reflection. Specular and Diffuse Reflection 2. Refraction and Snell's Law. Refraction in Water. Snell's Law Example 1. Snell's Law Example 2. Total Internal Reflection. Virtual Image. Parabolic Mirrors and Real Images. Parabolic Mirrors 2. Convex Parabolic Mirrors. Convex Lenses. Convex Lens Examples. Doppler effect formula for observed frequency. Concave Lenses. Object Image and Focal Distance Relationship (Proof of Formula). Object Image Height and Distance Relationship.

40 votes
Khan Academy Free Closed [?] Physical Sciences Calculus I Class2Go Network externalities

Work and energy. Potential energy. Kinetic energy. Mechanical advantage. Springs and Hooke's law. Introduction to work and energy. Work and Energy (part 2). Conservation of Energy. Work/Energy problem with Friction. Introduction to mechanical advantage. Mechanical Advantage (part 2). Mechanical Advantage (part 3). Intro to springs and Hooke's Law. Potential energy stored in a spring. Spring potential energy example (mistake in math). Introduction to work and energy. Work and Energy (part 2). Conservation of Energy. Work/Energy problem with Friction. Introduction to mechanical advantage. Mechanical Advantage (part 2). Mechanical Advantage (part 3). Intro to springs and Hooke's Law. Potential energy stored in a spring. Spring potential energy example (mistake in math).

No votes
Canvas.net Free Closed [?] Physical Sciences HumanitiesandScience HumanitiesandScience Nutrition Nutrition

Here is your chance to change the course of history! In this eight-week experience, you will begin developing profitable social and technological innovations to tackle our pressing energy and climate obligations. Course content includes videos and short readings carefully selected and organized to be accessible to a wide audience regardless of nationality, educational background, professional interests, or academic focus. All of the assigned work in this course is designed to help you dream up and begin developing your own sustainable energy innovation. Your innovation may be a physical product, or a service. It may be a technical innovation, or a social one. It need not make you rich, but you will be challenged to at least make your project self-supporting. The course materials, my feedback, and, most importantly, interactions with your classmates, will all help as you try to make your ideas real. You can complete the coursework in two to four hours per week, and any additional time you spend will just improve the chances your project is successful. Students should have completed the Intro to Sustainable Energy course on Canvas Network, or something similar, prior to taking this course. The "Introduction" course is publicly viewable with a CC Attribution Non-Commercial Share Alike license.

Trusted paper writing service WriteMyPaper.Today will write the papers of any difficulty.