Online courses directory (8)

Sort by: Name, Rating, Price
Start time: Any, Upcoming, Recent started, New, Always Open
Price: Any, Free, Paid
Starts : 2003-02-01
10 votes
MIT OpenCourseWare (OCW) Free Computer Sciences Civil and Environmental Engineering Graduate MIT OpenCourseWare

Explores a variety of models and optimization techniques for the solution of airline schedule planning and operations problems. Schedule design, fleet assignment, aircraft maintenance routing, crew scheduling, passenger mix, and other topics are covered. Recent models and algorithms addressing issues of model integration, robustness, and operations recovery are introduced. Modeling and solution techniques designed specifically for large-scale problems, and state-of-the-art applications of these techniques to airline problems are detailed.

Starts : 2006-09-01
15 votes
MIT OpenCourseWare (OCW) Free Computer Sciences Graduate Mechanical Engineering MIT OpenCourseWare

This course is a comprehensive introduction to control system synthesis in which the digital computer plays a major role, reinforced with hands-on laboratory experience. The course covers elements of real-time computer architecture; input-output interfaces and data converters; analysis and synthesis of sampled-data control systems using classical and modern (state-space) methods; analysis of trade-offs in control algorithms for computation speed and quantization effects. Laboratory projects emphasize practical digital servo interfacing and implementation problems with timing, noise, and nonlinear devices.

Starts : 2017-06-19
No votes
edX Free Closed [?] Engineering English Computer Science EdX ETHx Math Science

Robots are rapidly evolving from factory workhorses, which are physically bound to their work-cells, to increasingly complex machines capable of performing challenging tasks in our daily environment. The objective of this course is to provide the basic concepts and algorithms required to develop mobile robots that act autonomously in complex environments. The main emphasis is put on mobile robot locomotion and kinematics, environment perception, probabilistic map based localization and mapping, and motion planning. The lectures and exercises of this course introduce several types of robots such as wheeled robots, legged robots and drones.

This lecture closely follows the textbook Introduction to Autonomous Mobile Robots by Roland Siegwart, Illah Nourbakhsh, Davide Scaramuzza, The MIT Press, second edition 2011.

Starts : 2015-05-05
No votes
edX Free Closed [?] Engineering English Computer Science EdX TUMx

In recent years, flying robots such as miniature helicopters or quadrotors have received a large gain in popularity. Potential applications range from aerial filming over remote visual inspection of industrial sites to automatic 3D reconstruction of buildings. Navigating a quadrotor manually requires a skilled pilot and constant concentration. Therefore, there is a strong scientific interest to develop solutions that enable quadrotors to fly autonomously and without constant human supervision. This is a challenging research problem because the payload of a quadrotor is uttermost constrained and so both the quality of the onboard sensors and the available computing power is strongly limited. 

In this course, we will introduce the basic concepts for autonomous navigation for quadrotors. The following topics will be covered:

  • 3D geometry,
  • probabilistic state estimation,
  • visual odometry, SLAM, 3D mapping,
  • linear control.

In particular, you will learn how to infer the position of the quadrotor from its sensor readings and how to navigate it along a trajectory.

The course consists of a series of weekly lecture videos that we be interleaved by interactive quizzes and hands-on programming tasks. For the flight experiments, we provide a browser-based quadrotor simulator which requires the students to write small code snippets in Python.

This course is intended for undergraduate and graduate students in computer science, electrical engineering or mechanical engineering. This course has been offered by TUM for the first time in summer term 2014 on EdX with more than 20.000 registered students of which 1400 passed examination. The MOOC is based on the previous TUM lecture “Visual Navigation for Flying Robots” which received the TUM TeachInf best lecture award in 2012 and 2013.

FAQ

Do I need to buy a textbook?

No, all required materials will be provided within the courseware. However, if you are interested, we recommend the following additional materials:

  1. This course is based on the TUM lecture Visual Navigation for Flying Robots. The course website contains lecture videos (from last year), additional exercises and the full syllabus: http://vision.in.tum.de/teaching/ss2013/visnav2013
  2. Probabilistic Robotics. Sebastian Thrun, Wolfram Burgard and Dieter Fox. MIT Press, 2005.
  3. Computer Vision: Algorithms and Applications. Richard Szeliski. Springer, 2010.

Do I need to build/own a quadrotor?

No, we provide a web-based quadrotor simulator that will allow you to test your solutions in simulation. However, we took special care that the code you will be writing will be compatible with a real Parrot Ardrone quadrotor. So if you happen to have a Parrot Ardrone quadrotor, we encourage you to try out your solutions for real.

Starts : 2003-09-01
13 votes
MIT OpenCourseWare (OCW) Free Computer Sciences Aeronautics and Astronautics Graduate MIT OpenCourseWare

16.225 is a graduate level course on Computational Mechanics of Materials. The primary focus of this course is on the teaching of state-of-the-art numerical methods for the analysis of the nonlinear continuum response of materials. The range of material behavior considered in this course includes: linear and finite deformation elasticity, inelasticity and dynamics. Numerical formulation and algorithms include: variational formulation and variational constitutive updates, finite element discretization, error estimation, constrained problems, time integration algorithms and convergence analysis. There is a strong emphasis on the (parallel) computer implementation of algorithms in programming assignments. The application to real engineering applications and problems in engineering science is stressed throughout the course.

Starts : 2010-02-01
17 votes
MIT OpenCourseWare (OCW) Free Computer Sciences Civil and Environmental Engineering Graduate MIT OpenCourseWare

This course covers concepts of computation used in analysis of engineering systems. It includes the following topics: data structures, relational database representations of engineering data, algorithms for the solution and optimization of engineering system designs (greedy, dynamic programming, branch and bound, graph algorithms, nonlinear optimization), and introduction to complexity analysis. Object-oriented, efficient implementations of algorithms are emphasized.

Starts : 2000-09-01
7 votes
MIT OpenCourseWare (OCW) Free Computer Sciences Civil and Environmental Engineering Graduate MIT OpenCourseWare

This is a foundation subject in modern software development techniques for engineering and information technology. The design and development of component-based software (using C# and .NET) is covered; data structures and algorithms for modeling, analysis, and visualization; basic problem-solving techniques; web services; and the management and maintenance of software. Includes a treatment of topics such as sorting and searching algorithms; and numerical simulation techniques. Foundation for in-depth exploration of image processing, computational geometry, finite element methods, network methods and e-business applications. This course is a core requirement for the Information Technology M. Eng. program.

This class was also offered in Course 13 (Department of Ocean Engineering) as 13.470J. In 2005, ocean engineering subjects became part of Course 2 (Department of Mechanical Engineering), and the 13.470J designation was dropped in lieu of 2.159J.

Starts : 2016-01-04
116 votes
Coursera Free Closed [?] Computer Sciences English Artificial Intelligence Computer Science Engineering Mathematics

In this class you will look behind the scenes of image and video processing, from the basic and classical tools to the most modern and advanced algorithms.

Trusted paper writing service WriteMyPaper.Today will write the papers of any difficulty.