# Online courses directory (4)

We've always been communicating.... as we moved from signal fires, to alphabets & electricity the problems remained the same. What is Information Theory?. Prehistory: Proto-writing. Ptolemaic: Rosetta Stone. Ancient History: The Alphabet. Source Encoding. Visual Telegraphs (case study). Decision Tree Exploration. Electrostatic Telegraphs (case study). The Battery & Electromagnetism. Morse Code & The Information Age. Morse code Exploration. What's Next?. Symbol Rate. Symbol Rate Exploration. Introduction to Channel Capacity. Message Space Exploration. Measuring Information. Galton Board Exploration. Origin of Markov Chains. Markov Chain Exploration. A Mathematical Theory of Communication. Markov Text Exploration. What's Next?. What is Information Theory?. Prehistory: Proto-writing. Ptolemaic: Rosetta Stone. Ancient History: The Alphabet. Source Encoding. Visual Telegraphs (case study). Decision Tree Exploration. Electrostatic Telegraphs (case study). The Battery & Electromagnetism. Morse Code & The Information Age. Morse code Exploration. What's Next?. Symbol Rate. Symbol Rate Exploration. Introduction to Channel Capacity. Message Space Exploration. Measuring Information. Galton Board Exploration. Origin of Markov Chains. Markov Chain Exploration. A Mathematical Theory of Communication. Markov Text Exploration. What's Next?.

This course begins with an introduction to the theory of computability, then proceeds to a detailed study of its most illustrious result: Kurt Gödel's theorem that, for any system of true arithmetical statements we might propose as an axiomatic basis for proving truths of arithmetic, there will be some arithmetical statements that we can recognize as true even though they don't follow from the system of axioms. In my opinion, which is widely shared, this is the most important single result in the entire history of logic, important not only on its own right but for the many applications of the technique by which it's proved. We'll discuss some of these applications, among them: Church's theorem that there is no algorithm for deciding when a formula is valid in the predicate calculus; Tarski's theorem that the set of true sentence of a language isn't definable within that language; and Gödel's second incompleteness theorem, which says that no consistent system of axioms can prove its own consistency.

This course will introduce students to the field of computer science and the fundamentals of computer programming. It has been specifically designed for students with no prior programming experience, and does not require a background in Computer Science. This course will touch upon a variety of fundamental topics within the field of Computer Science and will use Java, a high-level, portable, and well-constructed computer programming language developed by Sun Microsystems, to demonstrate those principles. We will begin with an overview of the topics we will cover this semester and a brief history of software development. We will then learn about Object-Oriented programming, the paradigm in which Java was constructed, before discussing Java, its fundamentals, relational operators, control statements, and Java I/0. The course will conclude with an introduction to algorithmic design. By the end of the course, you should have a strong understanding of the fundamentals of Computer Science and the Java p…

Trusted paper writing service WriteMyPaper.Today will write the papers of any difficulty.