Upcoming Paid Online Courses (5)

Sort by: Name, Rating, Price
Start time: Any, Upcoming, Recent started, New, Always Open
Price: Any, Free, Paid
Starts : 2017-08-21 in 1 days
No votes
edX Free Closed [?] English Computer Science Data Analysis & Statistics EdX GTx

The modern data analysis pipeline involves collection, preprocessing, storage, analysis, and interactive visualization of data.

The goal of this course, part of the Analytics: Essential Tools and Methods MicroMasters program, is for you to learn how to build these components and connect them using modern tools and techniques.

In the course, you’ll see how computing and mathematics come together. For instance, “under the hood” of modern data analysis lies  numerical linear algebra, numerical optimization, and elementary data processing algorithms and data structures. Together, they form the foundations of numerical and data-intensive computing.

The hands-on component of this course will develop your proficiency with modern analytical tools. You will learn how to mash up Python, R, and SQL through Jupyter notebooks, among other tools. Furthermore, you will apply these tools to a variety of real-world datasets, thereby strengthening your ability to translate principles into practice.

Starts : 2017-09-07 in 18 days
No votes
edX Free Closed [?] English Biology & Life Sciences Data Analysis & Statistics EdX HarvardX Science

We will explain how to start with raw data, and perform the standard processing and normalization steps to get to the point where one can investigate relevant biological questions. Throughout the case studies, we will make use of exploratory plots to get a general overview of the shape of the data and the result of the experiment. We start with RNA-seq data analysis covering basic concepts of RNA-seq and a first look at FASTQ files. We will also go over quality control of FASTQ files; aligning RNA-seq reads; visualizing alignments and move on to analyzing RNA-seq at the gene-level: counting reads in genes; Exploratory Data Analysis and variance stabilization for counts; count-based differential expression; normalization and batch effects. Finally, we cover RNA-seq at the transcript-level: inferring expression of transcripts (i.e. alternative isoforms); differential exon usage. We will learn the basic steps in analyzing DNA methylation data, including reading the raw data, normalization, and finding regions of differential methylation across multiple samples. The course will end with a brief description of the basic steps for analyzing ChIP-seq datasets, from read alignment, to peak calling, and assessing differential binding patterns across multiple samples.

Given the diversity in educational background of our students we have divided the series into seven parts. You can take the entire series or individual courses that interest you. If you are a statistician you should consider skipping the first two or three courses, similarly, if you are biologists you should consider skipping some of the introductory biology lectures. Note that the statistics and programming aspects of the class ramp up in difficulty relatively quickly across the first three courses. By the third course will be teaching advanced statistical concepts such as hierarchical models and by the fourth advanced software engineering skills, such as parallel computing and reproducible research concepts.

These courses make up 2 XSeries and are self-paced:

PH525.1x: Statistics and R for the Life Sciences

linear-models-matrix-harvardx-ph525-2x" target="_blank">PH525.2x: Introduction to Linear Models and Matrix Algebra

PH525.3x: Statistical Inference and Modeling for High-throughput Experiments

PH525.4x: High-Dimensional Data Analysis

PH525.5x: Introduction to Bioconductor: annotation and analysis of genomes and genomic assays 

PH525.6x: High-performance computing for reproducible genomics

PH525.7x: Case studies in functional genomics


This class was supported in part by NIH grant R25GM114818.

HarvardX requires individuals who enroll in its courses on edX to abide by the terms of the edX honor code. HarvardX will take appropriate corrective action in response to violations of the edX honor code, which may include dismissal from the HarvardX course; revocation of any certificates received for the HarvardX course; or other remedies as circumstances warrant. No refunds will be issued in the case of corrective action for such violations. Enrollees who are taking HarvardX courses as part of another program will also be governed by the academic policies of those programs.

HarvardX pursues the science of learning. By registering as an online learner in an HX course, you will also participate in research about learning. Read our research statement to learn more.

Harvard University and HarvardX are committed to maintaining a safe and healthy educational and work environment in which no member of the community is excluded from participation in, denied the benefits of, or subjected to discrimination or harassment in our program. All members of the HarvardX community are expected to abide by Harvard policies on nondiscrimination, including sexual harassment, and the edX Terms of Service. If you have any questions or concerns, please contact harvardx@harvard.edu and/or report your experience through the edX contact form.

Starts : 2017-09-07 in 18 days
No votes
edX Free Closed [?] English Biology & Life Sciences Data Analysis & Statistics EdX HarvardX Science

We begin with an introduction to the biology, explaining what we measure and why. Then we focus on the two main measurement technologies: next generation sequencing and microarrays. We then move on to describing how raw data and experimental information are imported into R and how we use Bioconductor classes to organize these data, whether generated locally, or harvested from public repositories or institutional archives. Genomic features are generally identified using intervals in genomic coordinates, and highly efficient algorithms for computing with genomic intervals will be examined in detail. Statistical methods for testing gene-centric or pathway-centric hypotheses with genome-scale data are found in packages such as limma, some of these techniques will be illustrated in lectures and labs.

Given the diversity in educational background of our students we have divided the series into seven parts. You can take the entire series or individual courses that interest you. If you are a statistician you should consider skipping the first two or three courses, similarly, if you are biologists you should consider skipping some of the introductory biology lectures. Note that the statistics and programming aspects of the class ramp up in difficulty relatively quickly across the first three courses. By the third course will be teaching advanced statistical concepts such as hierarchical models and by the fourth advanced software engineering skills, such as parallel computing and reproducible research concepts.

These courses make up 2 XSeries and are self-paced:

PH525.1x: Statistics and R for the Life Sciences

linear-models-matrix-harvardx-ph525-2x" target="_blank">PH525.2x: Introduction to Linear Models and Matrix Algebra

PH525.3x: Statistical Inference and Modeling for High-throughput Experiments

PH525.4x: High-Dimensional Data Analysis

PH525.5x: Introduction to Bioconductor: annotation and analysis of genomes and genomic assays 

PH525.6x: High-performance computing for reproducible genomics

PH525.7x: Case studies in functional genomics


This class was supported in part by NIH grant R25GM114818.

HarvardX requires individuals who enroll in its courses on edX to abide by the terms of the edX honor code. HarvardX will take appropriate corrective action in response to violations of the edX honor code, which may include dismissal from the HarvardX course; revocation of any certificates received for the HarvardX course; or other remedies as circumstances warrant. No refunds will be issued in the case of corrective action for such violations. Enrollees who are taking HarvardX courses as part of another program will also be governed by the academic policies of those programs.

HarvardX pursues the science of learning. By registering as an online learner in an HX course, you will also participate in research about learning. Read our research statement to learn more.

Harvard University and HarvardX are committed to maintaining a safe and healthy educational and work environment in which no member of the community is excluded from participation in, denied the benefits of, or subjected to discrimination or harassment in our program. All members of the HarvardX community are expected to abide by Harvard policies on nondiscrimination, including sexual harassment, and the edX Terms of Service. If you have any questions or concerns, please contact harvardx@harvard.edu and/or report your experience through the edX contact form.

Starts : 2017-09-07 in 18 days
No votes
edX Free Closed [?] English Biology & Life Sciences Data Analysis & Statistics EdX HarvardX Science

If you’re interested in data analysis and interpretation, then this is the data science course for you.

Enhanced throughput: Almost all recently manufactured laptops and desktops include multiple core CPUs. With R, it is very easy to obtain faster turnaround times for analyses by distributing tasks among the cores for concurrent execution. We will discuss how to use Bioconductor to simplify parallel computing for efficient, fault-tolerant, and reproducible high-performance analyses. This will be illustrated with common multicore architectures and Amazon’s EC2 infrastructure.  

Enhanced interactivity: New approaches to programming with R and Bioconductor allow researchers to use the web browser as a highly dynamic interface for data interrogation and visualization. We will discuss how to create interactive reports that enable us to move beyond static tables and one-off graphics so that our analysis outputs can be transformed and explored in real time.

Enhanced reproducibility: New methods of virtualization of software environments, exemplified by the Docker ecosystem, are useful for achieving reproducible distributed analyses. The Docker Hub includes a considerable number of container images useful for important Bioconductor-based workflows, and we will illustrate how to use and extend these for sharable and reproducible analysis.

Given the diversity in educational background of our students we have divided the series into seven parts. You can take the entire series or individual courses that interest you. If you are a statistician you should consider skipping the first two or three courses, similarly, if you are biologists you should consider skipping some of the introductory biology lectures. Note that the statistics and programming aspects of the class ramp up in difficulty relatively quickly across the first three courses. By the third course will be teaching advanced statistical concepts such as hierarchical models and by the fourth advanced software engineering skills, such as parallel computing and reproducible research concepts.

These courses make up 2 XSeries and are self-paced:

PH525.1x: Statistics and R for the Life Sciences

linear-models-matrix-harvardx-ph525-2x" target="_blank">PH525.2x: Introduction to Linear Models and Matrix Algebra

PH525.3x: Statistical Inference and Modeling for High-throughput Experiments

PH525.4x: High-Dimensional Data Analysis

PH525.5x: Introduction to Bioconductor: annotation and analysis of genomes and genomic assays 

PH525.6x: High-performance computing for reproducible genomics

PH525.7x: Case studies in functional genomics


This class was supported in part by NIH grant R25GM114818.

HarvardX requires individuals who enroll in its courses on edX to abide by the terms of the edX honor code. HarvardX will take appropriate corrective action in response to violations of the edX honor code, which may include dismissal from the HarvardX course; revocation of any certificates received for the HarvardX course; or other remedies as circumstances warrant. No refunds will be issued in the case of corrective action for such violations. Enrollees who are taking HarvardX courses as part of another program will also be governed by the academic policies of those programs.

HarvardX pursues the science of learning. By registering as an online learner in an HX course, you will also participate in research about learning. Read our research statement to learn more.

Harvard University and HarvardX are committed to maintaining a safe and healthy educational and work environment in which no member of the community is excluded from participation in, denied the benefits of, or subjected to discrimination or harassment in our program. All members of the HarvardX community are expected to abide by Harvard policies on nondiscrimination, including sexual harassment, and the edX Terms of Service. If you have any questions or concerns, please contact harvardx@harvard.edu and/or report your experience through the edX contact form.

Starts : 2017-11-14 in 86 days
No votes
edX Free Closed [?] English CaltechX Computer Science DelftX EdX Engineering Physics

How can you tell a secret when everyone is able to listen in? In this course, you will learn how to use quantum effects, such as quantum entanglement and uncertainty, to implement cryptographic tasks with levels of security that are impossible to achieve classically.

This interdisciplinary course is an introduction to the exciting field of quantum cryptography, developed in collaboration between QuTech at Delft University of Technology and the California Institute of Technology.

By the end of the course you will

  • Be armed with a fundamental toolbox for understanding, designing and analyzing quantum protocols.
  • Understand quantum key distribution protocols.
  • Understand how untrusted quantum devices can be tested.
  • Be familiar with modern quantum cryptography – beyond quantum key distribution.

This course assumes a solid knowledge of linear algebra and probability at the level of an advanced undergraduate. Basic knowledge of elementary quantum information (qubits and simple measurements) is also assumed, but if you are completely new to quantum information additional videos are provided for you to fill in any gaps.

Trusted paper writing service WriteMyPaper.Today will write the papers of any difficulty.