Courses tagged with "Business" (20)

Sort by: Name, Rating, Price
Start time: Any, Upcoming, Recent started, New, Always Open
Price: Any, Free, Paid
Starts : 2013-08-11
80 votes
edX Free Closed [?] Physical Sciences English Business Calculus I Digital governance Evaluation Nutrition Structural engineering

Quantum computation is a remarkable subject building on the great computational discovery that computers based on quantum mechanics are exponentially powerful. This course aims to make this cutting-edge material broadly accessible to undergraduate students, including computer science majors who do not have any prior exposure to quantum mechanics. The course starts with a simple introduction to the fundamental principles of quantum mechanics using the concepts of qubits (or quantum bits) and quantum gates. This treatment emphasizes the paradoxical nature of the subject, including entanglement, non-local correlations, the no-cloning theorem and quantum teleportation. The course covers the fundamentals of quantum algorithms, including the quantum fourier transform, period finding, Shor's quantum algorithm for factoring integers, as well as the prospects for quantum algorithms for NP-complete problems. It also discusses the basic ideas behind the experimental realization of quantum computers, including the prospects for adiabatic quantum optimization and the D-Wave controversy.

Before your course starts, try the new edX Demo where you can explore the fun, interactive learning environment and virtual labs. Learn more.

Do I need a textbook for this class?
No. Notes will be posted each week. If you wish to consult other references, a list of related textbooks and online resources will be provided.

What is the estimated effort for course?
About 5-12 hrs/week.

Why is the work load range so wide?
How long you spend on the course depends upon your background and on the depth to which you wish to understand the material. The topics in this course are quite open ended, and will be presented so you can understand them at a high level or can try to follow it at a sophisticated level with the help of the posted notes.

How much does it cost to take the course?
Nothing! The course is free.

Will the text of the lectures be available?
Yes. All of our lectures will have transcripts synced to the videos.

Do I need to watch the lectures live?
No. You can watch the lectures at your leisure.

Starts : 2013-02-18
49 votes
edX Free Closed [?] Physical Sciences Accessible Websites Business Calculus I Design.htm%25252525253Fdatetype%25252525253Dupcoming&.htm%252525253Fcategoryid%252525253D10.htm%2525 Nutrition Undergraduate.htm%2525252525253Fstart%2525252525253D1400&limit%2525252525253D20.htm%25252525253Fsort

8.02x (Electricity and Magnetism) presents the basic concepts of Electromagnetism, and how this touches upon a vast variety of interesting real-world topics.

Starts : 2014-05-29
5 votes
edX Free Closed [?] Physical Sciences English product differentiation and variety Business Calculus I How to Succeed Information policy Nutrition

Mechanics ReView is a second look at introductory Newtonian Mechanics. It will give you a unified overview of mechanics that will dramatically increase your problem-solving ability. It is open to all students who meet the prerequisites (see right), but is especially designed for teachers and students who want to improve their existing understanding of mechanics.

Newtonian mechanics is the study of how forces change the motion of objects. This course begins with force, and moves on to straight-line motion, momentum, mechanical energy, rotational motion, angular momentum, and harmonic oscillators. Optional units include planetary orbits and a unit whose problems require multiple concepts to be applied to obtain one solution.

NOTE: New Section “Problem-solving Pedagogy”

We have developed a special approach to organizing the physics content knowledge and for applying it when solving problems.  This approach is called “Modeling Applied to Problem Solving” and has been researched carefully and has proven effectiveness for improving students’ performance in a later physics course on Electricity and Magnetism.

If you are a teacher looking to improve your knowledge of mechanics, or to learn new approaches to teach your students, we encourage you to sign up in the special teacher section featuring a discussion forum for teachers to discuss teaching ideas and techniques related to the topics discussed in this course.  To join these discussions,  verify yourself as a teacher, and we will sign you up in the teacher forum.

Note that this forum is exclusively reserved for teachers, so please do not register if you are not a teacher.

Teachers in the United States, and especially in Massachusetts, can receive extra benefit from this course. We offer Professional Development Points (PDPs) at no charge to teachers in Massachusetts who complete our course. If you are in a different state, we instead offer Continuing Education Units through the American Association of Physics Teachers. There is a fee for this certificate.

Course Syllabus

Note: Taking this Course Involves Using Some Experimental Materials

The RELATE group that authors and administers this course is an education research group, dedicated to understanding and improving education, especially online.  We showed that 8.MReV generated slightly more conceptual learning than a conventionally taught on-campus course  - but we were unable to find exactly what caused this learning.   (So far this is the only published measurement of learning in a MOOC).  This summer we will be comparing learning from different types of online activities that  will be administerered to randomly assigned sub-groups of our students.  At certain points in the course, new vs. previously used sequences of activities will be assigned to different groups.  We will then use common questions to compare the amount learned. Which group receives the new activities will be switched so that neither group will have all new activities.

Our experimental protocol has been approved by the MIT Committee on Use of Human Subjects.  As part of this approval we have the obligation to inform you about these experiments and to assure you that:

  • We will not divulge any information about you that may be identified as yours personally (e.g. a discussion post showing your user name). 
  • The grade for obtaining a certificate will be adjusted downwards (from 60%) to compensate if one group has harder materials.

Note: By clicking on the registration button, you indicate that you understand that everyone who participates in this course is randomly assigned to one of the groups described above. 

Welcome, and we hope you will both learn from and enjoy this course.


FAQs

Is there a required textbook?

You do not need to buy a textbook. All material is included in this edX course and is viewable online. If you would like to use a textbook with the course (for example, as a reference), most calculus-level books are suitable. Introductory physics books by Young and Freedman, Halliday and Resnick, or Knight are all appropriate (and older editions are fine).

 

What if I take a vacation?

The course schedule is designed with this in mind! Course contents are released four weeks ahead of the deadline, so even if you have a four-week vacation, you do not need to miss any deadlines and can still complete all of the material.

 

Will I get a certficiate?

Yes! This course awards certificates to all who satisfactorily complete the required portion of the course.

 

How are grades assigned?

There are three parts of the course that are worth points: Checkpoint problems that are folded in with the reading, Homework problems that come at the end of each unit, and Quizzes that are at the end of every 1-2 units. Each is worth a varying number of points, and you will not have to do every problem.

The course consists of 11 required units and three optional units. You do not need to complete the optional units in order to receive a certificate.

There is no final exam.

Starts : 2013-10-07
No votes
edX Free Closed [?] Physical Sciences Business Nutrition

PHYS 102x serves as an introduction to electromagnetism, including charge, electric and magnetic forces, induction, current, and resistance.

Starts : 2015-09-28
No votes
edX Free Closed [?] Physical Sciences English product differentiation and variety Business How to Succeed Nutrition

This aerodynamics course focuses on the study of the flow of air about a body, and the “body” will be an airplane, but many of the concepts explored are relevant to a wide variety of applications from sailboats to automobiles to birds. Learners completing this aerodynamics course will gain a fundamental understanding of concepts and models used to aerodynamically analyze and design subsonic, transonic, and supersonic aircraft.

While the course is an introduction to aerodynamics, it is an advanced subject typically taken as a third or fourth year undergraduate subject in aerospace engineering.

Starts : 2017-05-01
No votes
edX Free Closed [?] Engineering English Business How to Succeed Nutrition Quality

This course provides an overview of and introduction to the fundamentals of aeronautics, using the history of aviation as a story line. The course uses examples from the very beginning of aviation (the Montgolfier brothers’ balloon flight in 1783 and the Wright brothers’ heavier-than-air flight in 1903) and continues all the way through to the current Airbus A380 and future aircraft. During this trajectory three major topics are discussed: aeronautics, aerodynamics and flight mechanics.

Lectures are frequently accompanied by related exercises and demonstrations. The course also incorporates (design) challenges/competitions, based on the knowledge obtained through the lectures.

 

LICENSE
The course materials of this course are Copyright Delft University of Technology and are licensed under a Creative Commons Attribution-NonCommercial-ShareAlike (CC-BY-NC-SA) 4.0 International License.

Starts : 2013-09-09
No votes
edX Free Closed [?] Physical Sciences Business Calculus I Foreign Language Nutrition

Covers the basics of Newtonian mechanics, fluid mechanics, kinetic gas theory and thermodynamics in addition to exploring other real-world phenomena.

Starts : 2014-01-13
No votes
edX Free Closed [?] Physical Sciences Business Nutrition

Fundamental topics in electromagnetism: electric charge, electric fields, currents, magnetic fields, and induction.

Starts : 2016-02-09
No votes
edX Free Closed [?] Physical Sciences English product differentiation and variety Business Calculus I How to Succeed Information policy Nutrition

This course covers the physics, concepts, theories, and models underlying the discipline of aerodynamics. A general theme is the technique of velocity field representation and modeling via source and vorticity fields, and via their sheet, filament, or point-singularity idealizations.

The intent is to instill an intuitive feel for aerodynamic flowfield behavior, and to provide the basis of aerodynamic force analysis, drag decomposition, flow interference estimation, and many other important applications. A few computational methods are covered, primarily to give additional insight into flow behavior, and to identify the primary aerodynamic forces on maneuvering aircraft. A short overview of flight dynamics is also presented.

Before your course starts, try the new edX Demo where you can explore the fun, interactive learning environment and virtual labs. Learn more.

 

FAQ

Is there a required textbook?
You do not need to buy a textbook. All material is included in the edX course and is viewable online. This includes a full textbook in PDF form. If you would like to buy a print copy of the textbook, a mail-order service will be provided.

Can I still register after the start date?
You can register at any time, but you will not get credit for any assignments that are past due.

How are grades assigned?
Grades are made out of four parts: simple, multiple-choice "Concept Questions " completed during lectures; weekly homework assignments; and two exams, one at the midpoint and one at the end of the course.

How does this course use video? Do I need to watch the lectures live?
Video lectures as well as worked problems will be available and you can watch these at your leisure. Homework assignments and exams, however, will have due dates.

Will the text of the lectures be available?
Yes, transcripts of the course will be made available.

Will the material be made available to anyone registered for this course?
Yes, all the material will be made available to all students.

What are the prerequisites?
The student is expected to be well-versed in basic mechanics, vector calculus, and basic differential equations. Good familiarity with basic fluid mechanics concepts (pressure, density, velocity, stress, etc.) is expected, similar to the content in 16.101x (however, 16.101x is not a requirement). If you do not know these subjects beforehand, following the class material will be extremely difficult. We do not check students for prerequisites, so you are certainly allowed to try.

Who can register for this course?
Unfortunately, learners from Iran, Sudan, Cuba and the Crimea region of Ukraine will not be able to register for this course at the present time. While edX has received a license from the U.S. Office of Foreign Assets Control (OFAC) to offer courses to learners from Iran and Sudan our license does not cover this course. Separately, EdX has applied for a license to offer courses to learners in the Crimea region of Ukraine, but we are awaiting a determination from OFAC on that application. We are deeply sorry the U.S. government has determined that we have to block these learners, and we are working diligently to rectify this situation as soon as possible.

Starts : 2014-10-27
No votes
edX Free Closed [?] Computer Sciences English Brain stem Business Calculus I Cells Evaluation Nutrition

This course gives an introduction to the field of theoretical and computational neuroscience with a focus on models of single neurons. Neurons encode information about stimuli in a sequence of short electrical pulses (spikes). Students will learn how mathematical tools such as differential equations, phase plane analysis, separation of time scales, and stochastic processes can be used to understand the dynamics of neurons and the neural code.


Week 1: A first simple neuron model

Week 2:  Hodgkin-Huxley models and biophysical modeling

Week 3: Two-dimensional models and phase plane analysis

Week 4: Two-dimensional models (cont.)/ Dendrites

Week 5: Variability of spike trains and the neural code

Week 6: Noise models, noisy neurons and coding

Week 7: Estimating neuron models for coding and decoding

Before your course starts, try the new edX Demo where you can explore the fun, interactive learning environment and virtual labs. Learn more.

Starts : 2014-02-03
No votes
edX Free Closed [?] Physical Sciences English Business Calculus I Information policy Nutrition Structural engineering Teacher+Professional+Development

The study of the night sky instilled wonder in our ancestors. Modern astronomy extends the human view to previously unexplored regions of space and time. In this course, you will gain an understanding of these discoveries through a focus on relativity—Einstein's fascinating and non-intuitive description of the physical world. By studying relativity and astronomy together, you will develop physical insight and quantitative skills, and you’ll regain a profound sense of wonder for the universe we call home.

 

FAQ

  • What topics will the course cover?
    • Section One—Introduction
    • Section Two—3, 2, 1 … Launching the journey into spacetime
    • Section Three—Special relativity: from light to dark
    • Section Four—General relativity: from flat to curved
  • Is there a required textbook?

    • No textbook is required. Notes will be posted weekly. A list of supplemental resources, including textbooks, will be provided.

  • What are the learning outcomes of this course?

    • Explain the meaning and significance of the postulates of special and general relativity.

    • Discuss significant experimental tests of both special and general relativity.

    • Analyze paradoxes in special relativity.

    • Apply appropriate tools for problem solving in special relativity.

    • Describe astrophysical situations where the consequences of relativity qualitatively impact predictions and/or observations.

    • Describe daily situations where relativity makes a difference.

Starts : 2016-03-01
No votes
edX Free Closed [?] Physical Sciences English Aviation Business Calculus I Information policy Nutrition

Despite spectacular recent progress, there is still a lot we don't know about our universe. We don't know why the Big Bang happened. We don't know what most of the universe is made of. We don't know whether there is life in space. We don't know how planets form, how black holes get so big, or where the first stars have gone. This course will take you through nine of the greatest unsolved problems of modern astrophysics. We can't promise you the answers, but we will explain what we do and don't know, and give you an up-to-date understanding of current research. This course is designed for people who would like to get a deeper understanding of these mysteries than that offered by popular science articles and shows. 

This is the first of four ANUx courses which together make up the Australian National University's first year astrophysics program. It is followed by courses on exoplanets, on the violent universe, and on cosmology. These courses compromise the Astrophysics XSeries. Learn more about the XSeries program and register for all the courses in the series today!

Starts : 2016-03-01
No votes
edX Free Closed [?] Physical Sciences English Business Calculus I Information policy Nutrition

The discovery of exoplanets is one of the greatest revolutions in modern astrophysics. Twenty years ago, we had no idea whether any of the countless stars out there beyond our solar system had planets or not.

Today, things are totally different. Over 1,000 planetary systems have been discovered. The universe is teeming with planets. And what strange planets they are - hot Jupiter-like planets skimming the surfaces of their stars, cold and lonely free-floating planets far from any star, planets made of diamond, planets with rain made of glass, super-Earths and even planets orbiting neutron stars. In this course, we’ll bring you up-to-date with the latest research on exoplanets, and how this research has revolutionised our understanding of the formation of solar systems like our own.

This course is designed for people who would like to get a deeper understanding of these mysteries than that offered by popular science articles and shows. You will need reasonable high-school level mathematics and physics to get the most out of this course.

This is the second of four ANUx courses which together make up the Australian National University's first year astrophysics program. It follows on from the introductory course on the Greatest Unsolved Mysteries of the Universe, and is followed by courses on the violent universe and on cosmology. These courses compromise the Astrophysics XSeriesLearn more about the XSeries program and register for all the courses in the series today!

Starts : 2016-09-15
No votes
edX Free Closed [?] Physical Sciences English Business Calculus I How to Succeed Information policy Nutrition

A flow is called hypersonic if the Mach number is greater than 5. This means that the flow speed is more than five times the speed of sound. In air at room temperature, the speed of sound is around 340 m/s, so a Mach 5 flow would have a flow speed of 1.7 km/s or just over 6,000 km/h. When a rocket launches a satellite into earth orbit, when a probe enters the atmosphere of another planet or when an aircraft is propelled by a supersonic combustion ramjet engine (a scramjet), hypersonic flows are encountered. Hypersonics – from Shock Waves to Scramjets introduces the basic concepts associated with flight at speeds greater than Mach 5 and takes students to the stage where they can analyse the performance of a scramjet engine that might be used in a future access-to-space system.

Starts : 2015-09-15
No votes
edX Free Closed [?] Physical Sciences English Business Calculus I Fetal Circulation Nutrition

Preparing for the AP Physics 2 exam requires a deep understanding of many different topics in physics as well as an understanding of the AP exam and the types of questions it asks. This course is Part 1 of our AP Physics 2 series designed to prepare you for the AP exam. 

In Part 1, you will learn about fluids and thermodynamics. You will explore pressure, buoyant forces and concepts that involve conservation of mass and energy. You will also be learning about heat, its transfer and how we have taken advantage of its behavior in different types of technology.

As you work through this course, you will find lecture videos taught by expert AP physics teachers, practice multiple choice questions and free response questions that are similar to what you will encounter on the AP exam and tutorial videos that show you step-by-step how to solve problems. By the end of the course, you will be prepared to take on the AP exam!

 

This course is authorized as an Advanced Placement® (AP®) course by the AP Course Audit. The AP Course Audit was created by the College Board to give schools and students the confidence that all AP courses meet or exceed the same clearly articulated curricular expectations of colleges and universities.

By taking an AP course and scoring successfully on the related AP Exam, students can:

  • Stand Out in College Admissions
  • Earn College Credits
  • Skip Introductory Classes
  • Build College Skills

Advanced Placement® and AP® are trademarks registered and/or owned by the College Board, which was not involved in the production of, and does not endorse, these offerings.

 

Starts : 2016-02-15
No votes
edX Free Closed [?] Physical Sciences English Business Calculus I Cells How to Succeed Nutrition

Ce cours est une première introduction à la mécanique des fluides. Nous allons aborder tout d'abord les propriétés physiques des fluides : les états de la matière et la notion de viscosité. Un chapitre sera dédié à la tension de surface et à la capillarité. Nous introduirons ensuite le concept de similitude et l’utilisation des nombres adimensionnels. Nous allons alors considérer la statique des fluides à travers la loi de l'hydrostatique. La dynamique des fluides sera abordée en premier lieu par la cinématique. Ensuite, nous traiterons des équations de bilan avec notamment une application du théorème de conservation de l’énergie cinétique : le théorème de Bernoulli. Dans le dernier, nous montrerons que ce théorème relativement simple permet d’expliquer et de calculer des écoulements tels que ceux observés dans les rivières. Les vidéos du cours seront enrichies de vidéos d’expériences qui illustreront les concepts clés et par des quiz pour tester votre intuition et vos connaissances. Le dernier module vous permettra de piloter à distance une expérience d'hydraulique qui a lieu dans les laboratoires de l'EPFL.

This course is presented in French. 

Starts : 2016-04-27
No votes
edX Free Closed [?] Physical Sciences English product differentiation and variety Business Calculus I Nutrition

This physics course introduces the concept of tensor product states to discuss entanglement and Bell inequalities. You will learn about angular momentum and its representations. This is used to understand the spectrum of central potentials and to introduce hidden symmetries. Lastly, you will learn about the addition of angular momentum and an algebraic approach to the hydrogen atom spectrum.

This is the last of three courses offering a sophisticated view of quantum mechanics and its proper mathematical foundation.

To follow this course you should have taken Part 1: Wave Mechanics, and Part 2: Quantum Dynamics.

Completing the 3-part Quantum Mechanics series will give you the necessary foundation to pursue advanced study or research at the graduate level in areas related to quantum mechanics

The series will follow MIT’s on campus 8.05, the second semester of the three-course sequence on undergraduate quantum mechanics, and will be equally rigorous. 8.05 is a signature course in MIT's physics program and a keystone in the education of physics majors. 

Learner Testimonials

I’ve thought long and hard to come up with a better MOOC than this one (I’ve completed 25 of these things over the past 2 years) and can’t do it. 8.05x is #1 and I suspect will stay that way for some time to come.

 “Being an engineering student from India trying to shift to Physics, I am often faced with the requirement to study topics on my own. Very often this has led me to feel inadequate. 8.05x was the perfect opportunity for me to both gain knowledge and evaluate my understanding on a high quality international platform. It has really exceeded my expectations. Now, at the end of fifteen weeks, I feel more confident and hopefully I am more knowledgeable.

FAQ

Who can register for this course?

Unfortunately, learners from Iran, Cuba, Sudan and the Crimea region of Ukraine will not be able to register for this course at the present time. While edX has received a license from the U.S. Office of Foreign Assets Control (OFAC) to offer courses to learners from Iran and Sudan our license does not cover this course.

Separately, EdX has applied for a license to offer courses to learners in the Crimea region of Ukraine, but we are awaiting a determination from OFAC on that application. We are deeply sorry the U.S. government has determined that we have to block these learners, and we are working diligently to rectify this situation as soon as possible.

Starts : 2014-09-16
No votes
edX Free Closed [?] Physical Sciences English product differentiation and variety Business Calculus I Nutrition

8.EFTx is an online version of MIT's graduate Effective Field Theory course. The course follows the MIT on-campus class 8.851 as it was given by Professor Iain Stewart in the Fall of 2013, and includes his video lectures, resource material on various effective theories, and a series of problems to facilitate learning the material. Anyone can register for the online version of the course. When the course is being taught on campus, students at MIT or Harvard may also register for 8.851 for course credit.

Effective field theory (EFT) provides a fundamental framework to describe physical systems with quantum field theory. In this course you will learn both how to construct EFTs and how to apply them in a variety of situations. We will cover the majority of the common tools that are used by different effective field theories. In particular: identifying degrees of freedom and symmetries, formulating power counting expansions (both dimensional and non-dimensional), field redefinitions, bottom-up and top-down effective theories, fine-tuned effective theories, matching and Wilson coefficients, reparameterization invariance, and various examples of advanced renormalization group techniques. Examples of effective theories we will cover are the Standard Model as an effective field theory, integrating out the massive W, Z, Higgs, and top, chiral perturbation theory, non-relativistic effective field theories including those with a large scattering length, static sources and Heavy Quark Effective Theory (HQET), and a theory for collider physics, the Soft-Collinear Effective Theory (SCET).

Course Flow

Since this is an advanced graduate physics course, you will find that self-motivation and interaction with others is essential to learning the material. The purpose of the online course is to set you up with a foundation, to teach you to speak the language of EFT, and to connect you with other students and researchers that are interested in learning or broadening their exposure to this subject. Each week you will complete automatically graded homework problems to test your understanding and to help you master the material. You are expected to discuss the homework with other people in the class, but your online responses must be done individually. To facilitate these interactions there will be a forum for student-to-student discussions, with threads to cover different topics, and moderators with experience in this field. Student learning and discussions will also be prompted by questions posed after each lecture topic.

There will be no tests or final exam, but at the end of the course each student will give a 30-minute presentation on an EFT topic of their choosing. The subject of effective field theory is rich and diverse, and far broader than we will be able to cover in a single course. The presentations will create an opportunity for you to learn about additional subjects beyond those in lecture from your fellow students. To facilitate this learning opportunity, each student will be required to watch and grade five presentations from among their fellow students.

Since this is a graduate course, we anticipate that learning the subject and having the 8.EFTx materials available as an online resource will be more valuable to most of you than obtaining a grade. Therefore anyone who registers for the course will be able to retain access to the course materials after the course has ended. Note that when the course is archival mode that the problems can be attempted and checked in the same manner as when the course was running.

Starts : 2015-06-02
No votes
edX Free Closed [?] Physical Sciences English Business Information policy Nutrition

Have you ever wondered about planets in other solar systems? Have you ever thought about the possibility of life elsewhere in the Universe? For the first time in human history, we know that planets around other stars not only exist, but are common!

Alien Worlds focuses on the search and characterization of planets orbiting other stars (called extrasolar planets or “exoplanets”). Over the course of nine modules, we will learn some of the techniques used to discover the thousands of known exoplanets and will discuss how we can use basic scientific tools to characterize the sizes, masses, compositions, and atmospheres of exoplanets. We will also learn about the diversity of stars in the Galaxy to understand how stellar properties affect exoplanet detection techniques and influence planetary formation and habitability.

In addition to the exploration of exoplanets, students in Alien Worlds will gain a basic understanding of light, gravity and motion, and be introduced to some of the most extreme life on planet Earth. We will hear from experts at the forefront of exoplanet science and interact with other participants and instructors through social media and online tools. Students will leave Alien Worlds with a better understanding of their place in the Universe and the skills to comprehend the wealth of new discoveries surrounding the countless worlds around distant stars.

Starts : 2014-04-22
No votes
edX Free Closed [?] Physical Sciences English Business Foreign+Language Information policy Nutrition

This is an introductory astronomy survey class that covers our understanding of the physical universe and its major constituents, including planetary systems, stars, galaxies, black holes, quasars, larger structures, and the universe as a whole. We will learn how modern astronomical observations and applications of physics we know from the planet Earth reveal the nature of these objects and explain their observed properties, and tell us how they form and evolve. We will also examine various cosmic phenomena, from variable or exploding stars to the expansion of the universe and the evidence for dark matter, dark energy, and the big bang. The universe as a whole and all of its major constituents are evolving, and we now have a fairly complete and consistent picture of these processes that is based on the objective evidence from observations and the laws of physics. The goal of this class is both to learn about the fascinating objects and phenomena that populate the universe, and to understand how we know all that.

Trusted paper writing service WriteMyPaper.Today will write the papers of any difficulty.