# Courses tagged with "EdX" (8)

A wondrously romantic belief is that brilliant thinkers magically produce brilliant ideas: Einstein jostles his hair and relativity falls out. We can enjoy these fanciful visions of leaps of genius, but we should not be fooled into believing that they’re reality.

Brilliant innovators are brilliant because they practice habits of thinking that inevitably carry them step by step to works of genius. No magic and no leaps are involved.

Professor Starbird will discuss how habits of effective thinking and creativity can be taught and learned through puzzles and mathematics. Anyone who practices these habits of mind will inevitably create new insights, new ideas, and new solutions.

2.01x introduces principles of structural analysis and strength of materials in applications to three essential types of load-bearing elements: bars in axial loading, axisymmetric shafts in torsion, and symmetric beams in bending.

The course covers fundamental concepts of continuum mechanics, including internal resultants, displacement fields, stress, and strain.

While emphasizing analytical techniques, the course also provides an introduction to computing environments (MATLAB) and numerical methods (Finite Elements: Akselos)

This course is based on the first subject in solid mechanics for MIT Mechanical Engineering students. Join them and learn how to predict linear elastic behavior, and prevent structural failure, by relying on the notions of equilibrium, geometric compatibility, and constitutive material response.

We are surrounded by information, much of it numerical, and it is important to know how to make sense of it. Stat2x is an introduction to the fundamental concepts and methods of statistics, the science of drawing conclusions from data.

The course is the online equivalent of Statistics 2, a 15-week introductory course taken in Berkeley by about 1,000 students each year. Stat2x is divided into three 5-week components. Stat2.1x is the first of the three.

The focus of Stat2.1x is on descriptive statistics. The goal of descriptive statistics is to summarize and present numerical information in a manner that is illuminating and useful. The course will cover graphical as well as numerical summaries of data, starting with a single variable and progressing to the relation between two variables. Methods will be illustrated with data from a variety of areas in the sciences and humanities.

There will be no mindless memorization of formulas and methods. Throughout Stat2.1x, the emphasis will be on understanding the reasoning behind the calculations, the assumptions under which they are valid, and the correct interpretation of results.

**FAQ**

- What is the format of the class?
- Instruction will be consist of brief lectures and exercises to check comprehension. Grades (Pass or Not Pass) will be decided based on a combination of scores on short assignments, quizzes, and a final exam.

- How much does it cost to take the course?
- Nothing! The course is free.

- Will the text of the lectures be available?
- Yes. All of our lectures will have transcripts synced to the videos.

- Do I need to watch the lectures live?
- No. You can watch the lectures at your leisure.

- Can I contact the Instructor or Teaching Assistants?
- Yes, but not directly. The discussion forums are the appropriate venue for questions about the course. The instructors will monitor the discussion forums and try to respond to the most important questions; in many cases response from other students and peers will be adequate and faster.

- Do I need any other materials to take the course?
- If you have any questions about edX generally, please see the edX FAQ.

Statistics 2 at Berkeley is an introductory class taken by about 1,000 students each year. Stat2.3x is the last in a sequence of three courses that make up Stat2x, the online equivalent of Berkeley's Stat 2. The focus of Stat2.3x is on statistical inference: how to make valid conclusions based on data from random samples. At the heart of the main problem addressed by the course will be a population (which you can imagine for now as a set of people) connected with which there is a numerical quantity of interest (which you can imagine for now as the average number of MOOCs the people have taken). If you could talk to each member of the population, you could calculate that number exactly. But what if the population is so large that your resources will not stretch to interviewing every member? What if you can only reach a subset of the population?

Stat 2.3x will discuss good ways to select the subset (yes, at random); how to estimate the numerical quantity of interest, based on what you see in your sample; and ways to test hypotheses about numerical or probabilistic aspects of the problem.

The methods that will be covered are among the most commonly used of all statistical techniques. If you have ever read an article that claimed, "The margin of error in such surveys is about three percentage points," or, "Researchers at the University of California at Berkeley have discovered a highly significant link between ...," then you should expect that by the end of Stat 2.3x you will have a pretty good idea of what that means. Examples will range all the way from a little girl's school science project (seriously – she did a great job and her results were published in a major journal) to rulings by the U.S. Supreme Court.

The fundamental approach of the series was provided in the description of Stat2.1x and appears here again: There will be no mindless memorization of formulas and methods. Throughout the course, the emphasis will be on understanding the reasoning behind the calculations, the assumptions under which they are valid, and the correct interpretation of results.

Statistics 2 at Berkeley is an introductory class taken by about 1000 students each year. Stat2.2x is the second of three five-week courses that make up Stat2x, the online equivalent of Berkeley's Stat 2.

The focus of Stat2.2x is on probability theory: exactly what is a random sample, and how does randomness work? If you buy 10 lottery tickets instead of 1, does your chance of winning go up by a factor of 10? What is the law of averages? How can polls make accurate predictions based on data from small fractions of the population? What should you expect to happen "just by chance"? These are some of the questions we will address in the course.

We will start with exact calculations of chances when the experiments are small enough that exact calculations are feasible and interesting. Then we will step back from all the details and try to identify features of large random samples that will help us approximate probabilities that are hard to compute exactly. We will study sums and averages of large random samples, discuss the factors that affect their accuracy, and use the normal approximation for their probability distributions.

Be warned: by the end of Stat2.2x you will not want to gamble. Ever. (Unless you're really good at counting cards, in which case you could try blackjack, but perhaps after taking all these edX courses you'll find other ways of earning money.)

The fundamental approach of the series was provided in the description of Stat2.1x and appears here again: There will be no mindless memorization of formulas and methods. Throughout the course, the emphasis will be on understanding the reasoning behind the calculations, the assumptions under which they are valid, and the correct interpretation of results.

**FAQ**

- What is the format of the class?
- Instruction will be consist of brief lectures and exercises to check comprehension. Grades (Pass or Not Pass) will be decided based on a combination of scores on short assignments, quizzes, and a final exam.

- How much does it cost to take the course?
- Nothing! The course is free.

- Will the text of the lectures be available?
- Yes. All of our lectures will have transcripts synced to the videos.

- Do I need to watch the lectures live?
- No. You can watch the lectures at your leisure.

- Will certificates be awarded?
- Yes. Online learners who achieve a passing grade in a course can earn a certificate of achievement. These certificates will indicate you have successfully completed the course, but will not include a specific grade. Certificates will be issued by edX under the name of BerkeleyX, designating the institution from which the course originated.

- Can I contact the Instructor or Teaching Assistants?
- Yes, but not directly. The discussion forums are the appropriate venue for questions about the course. The instructors will monitor the discussion forums and try to respond to the most important questions; in many cases response from other students and peers will be adequate and faster.

- Do I need any other materials to take the course?
- If you have any questions about edX generally, please see the edX FAQ.