Courses tagged with "EdX" (13)

Sort by: Name, Rating, Price
Start time: Any, Upcoming, Recent started, New, Always Open
Price: Any, Free, Paid
Starts : 2013-09-23
No votes
edX Free Closed [?] Engineering Circuits EdX Electrical Engineering and Computer Science Electronic Circuits

This course is taught in Mandarin. A basic EE course for the general MOOCer about circuits and multiple-disciplinary case studies. (Taught in Mandarin.)

Starts : 2017-06-19
No votes
edX Free Engineering English Computer Science EdX ETHx Math Science

Robots are rapidly evolving from factory workhorses, which are physically bound to their work-cells, to increasingly complex machines capable of performing challenging tasks in our daily environment. The objective of this course is to provide the basic concepts and algorithms required to develop mobile robots that act autonomously in complex environments. The main emphasis is put on mobile robot locomotion and kinematics, environment perception, probabilistic map based localization and mapping, and motion planning. The lectures and exercises of this course introduce several types of robots such as wheeled robots, legged robots and drones.

This lecture closely follows the textbook Introduction to Autonomous Mobile Robots by Roland Siegwart, Illah Nourbakhsh, Davide Scaramuzza, The MIT Press, second edition 2011.

Starts : 2015-05-05
No votes
edX Free Engineering English Computer Science EdX TUMx

In recent years, flying robots such as miniature helicopters or quadrotors have received a large gain in popularity. Potential applications range from aerial filming over remote visual inspection of industrial sites to automatic 3D reconstruction of buildings. Navigating a quadrotor manually requires a skilled pilot and constant concentration. Therefore, there is a strong scientific interest to develop solutions that enable quadrotors to fly autonomously and without constant human supervision. This is a challenging research problem because the payload of a quadrotor is uttermost constrained and so both the quality of the onboard sensors and the available computing power is strongly limited. 

In this course, we will introduce the basic concepts for autonomous navigation for quadrotors. The following topics will be covered:

  • 3D geometry,
  • probabilistic state estimation,
  • visual odometry, SLAM, 3D mapping,
  • linear control.

In particular, you will learn how to infer the position of the quadrotor from its sensor readings and how to navigate it along a trajectory.

The course consists of a series of weekly lecture videos that we be interleaved by interactive quizzes and hands-on programming tasks. For the flight experiments, we provide a browser-based quadrotor simulator which requires the students to write small code snippets in Python.

This course is intended for undergraduate and graduate students in computer science, electrical engineering or mechanical engineering. This course has been offered by TUM for the first time in summer term 2014 on EdX with more than 20.000 registered students of which 1400 passed examination. The MOOC is based on the previous TUM lecture “Visual Navigation for Flying Robots” which received the TUM TeachInf best lecture award in 2012 and 2013.


Do I need to buy a textbook?

No, all required materials will be provided within the courseware. However, if you are interested, we recommend the following additional materials:

  1. This course is based on the TUM lecture Visual Navigation for Flying Robots. The course website contains lecture videos (from last year), additional exercises and the full syllabus:
  2. Probabilistic Robotics. Sebastian Thrun, Wolfram Burgard and Dieter Fox. MIT Press, 2005.
  3. Computer Vision: Algorithms and Applications. Richard Szeliski. Springer, 2010.

Do I need to build/own a quadrotor?

No, we provide a web-based quadrotor simulator that will allow you to test your solutions in simulation. However, we took special care that the code you will be writing will be compatible with a real Parrot Ardrone quadrotor. So if you happen to have a Parrot Ardrone quadrotor, we encourage you to try out your solutions for real.

Starts : 2016-06-28
141 votes
edX Free Computer Sciences English EdX Electronics Engineering MITx Science

Want to learn how your radio works? Wondering how to implement filters using resistors, inductors, and capacitors? Wondering what are some other applications of RLC and CMOS circuits? This free circuit course, taught by edX CEO and MIT Professor Anant Agarwal and MIT colleagues, is for you.

The third and final online Circuits and Electronics courses is taken by all MITElectrical Engineering and Computer Science (EECS) majors.

Topics covered include: dynamics of capacitor, inductor and resistor networks; design in the time and frequency domains; op-amps, and analog and digital circuits and applications. Design and lab exercises are also significant components of the course.

Weekly coursework includes interactive video sequences, readings from the textbook, homework, online laboratories, and optional tutorials. The course will also have a final exam.

This is a self-paced course, so there are no weekly deadlines. However, all assignments are due by June 15, 2019, when the course will close.


Student Testimonials

“Brilliant course! It's definitely the best introduction to electronics in Universe! Interesting material, clean explanations, well prepared quizzes, challenging homeworks and fun labs.” - Ilya.

“6.002x will be a classic in the field of online learning. It combines Prof. Agarwal's enthusiasm for electronics and education. The online circuit design program works very well. The material is difficult. I took the knowledge from the class and built an electronic cat feeder.” - Stan 

Starts : 2014-11-18
No votes
edX Free Closed [?] Engineering English EdX UWashingtonX

*Note - This is an Archived course*

This is a past/archived course. At this time, you can only explore this course in a self-paced fashion. Certain features of this course may not be active, but many people enjoy watching the videos and working with the materials. Make sure to check for reruns of this course.

Composites are used in many industries today to enable high-performance products at economic advantage. These industries range from space to sports and include manufactured products for aircraft, transportation, energy, construction, sports, marine, and medical use. There are many material, economic and aesthetic advantages to using composites, but a solid knowledge of the physical properties, including the mechanics, tooling, design, inspection & repair, and manufacturing options is required for working in this medium as they are intrinsically linked.

This course provides an introduction to the fundamentals of composite materials for high performance structures from the point of view of Aerospace engineering design, manufacturing, and repair. It is designed to address critical areas of composite technologies that focus on materials, manufacturing, mechanics, design, inspection, and repair.  In this course students will learn how composite materials achieve properties of strength, weight ratios and durability that surpass aluminum in aircraft design.  For these high performance applications engineers typically rely on laminated structures, which are built up from many varying layers of ply-materials. Using this process the mechanical properties of the composite part can be tailored to specific applications resulting in significant weight and cost savings. Tailoring specific properties and designing innovative laminate structures highlights the multidisciplinary nature of this industry and how it touches the expertise of many disciplines including engineers, mechanics, and inspection specialists.

After successfully completing this course, students will be able to identify the unique characteristics of composites and understand how advanced composite structures are designed, manufactured and maintained.


Who Can Take This Course?

Unfortunately, learners from Iran, Sudan, Cuba and the Crimea region of Ukraine will not be able to register for this course at the present time. While edX has received a license from the U.S. Office of Foreign Assets Control (OFAC) to offer courses to learners from Iran, Sudan and Cuba, our license does not cover this course. Separately, EdX has applied for a license to offer courses to learners in the Crimea region of Ukraine, but we are awaiting a determination from OFAC on that application. We are deeply sorry the U.S. government has determined that we have to block these learners, and we are working diligently to rectify this situation as soon as possible.

Starts : Anytime, Self-Paced
No votes
edX Free Closed [?] Engineering EdX

Enter the world of signal processing: analyze and extract meaning from the signals around us!

Starts : 2016-02-26
No votes
edX Free Engineering English EdX Electronics EPFLx Science

Ce cours définit les notions de base des circuits électriques composés des trois éléments passifs (résistance, inductance et condensateur), linéaires et des sources de tension et de courant.

On traite ces circuits avec les lois élémentaires de l'électricité puis on développe une série de méthodes de combinaisons des éléments et de transformations du circuit qui mènent à leur simplification et permettent une analyse aisée des courants, tensions et puissances présents. Quelques circuits particuliers classiques sont présentés. 

Toutes ces méthodes sont premièrement développées en régime continu puis elles sont généralisées au régime alternatif, faisant intervenir le calcul complexe. L'importance du régime alternatif réside dans le fait qu'il est omniprésent au niveau de la distribution électrique domestique et industrielle.

This course is presented in French.

Starts : 2017-05-01
No votes
edX Free Engineering English DelftX EdX

This course provides an overview of and introduction to the fundamentals of aeronautics, using the history of aviation as a story line. The course uses examples from the very beginning of aviation (the Montgolfier brothers’ balloon flight in 1783 and the Wright brothers’ heavier-than-air flight in 1903) and continues all the way through to the current Airbus A380 and future aircraft. During this trajectory three major topics are discussed: aeronautics, aerodynamics and flight mechanics.

Lectures are frequently accompanied by related exercises and demonstrations. The course also incorporates (design) challenges/competitions, based on the knowledge obtained through the lectures.


The course materials of this course are Copyright Delft University of Technology and are licensed under a Creative Commons Attribution-NonCommercial-ShareAlike (CC-BY-NC-SA) 4.0 International License.

Starts : 2014-04-23
No votes
edX Free Closed [?] Engineering DelftX EdX EdX Science

Explore the complexity and challenges of infrastructure systems (Transport, Energy, IT/Telecom and Water) in the 21st century.

Starts : 2013-10-28
No votes
edX Free Engineering English EdX Energy & Earth Sciences Environmental Studies Science University of TorontoX

We live on the surface of a dynamic and yet paradoxically stable planet that experiences a remarkable range of energetic phenomena, from waves and currents in the ocean to wind and thunderstorms in the atmosphere. This course traces how the remarkable concept called energy is the natural way of describing, understanding and unifying these diverse phenomena. The course traces the cascade of energy from sunlight to its final destination in a thermal form, considering differential surface heating, the role of convection and buoyancy and the formation of the Earth’s circulation system, and the links to the ocean circulation system. We consider the curvature and rotation of the Earth as key constraints on a system driven by sunlight and energy transformations.

Before your course starts, try the new edX Demo where you can explore the fun, interactive learning environment and virtual labs. Learn more.

How much time will the course take?

Obviously the answer will depend on your background and motivation to master the course material. Each week will consist of 5 or 6 segments that will each take 5 to 10 minutes to watch or listen to once. There will be some exploratory questions for each lesson and a confirmation quiz for each week. There will be one exploratory activity for each week. The average commitment will be 2-3 hours per week with perhaps 20 hours required for the whole course.

What background does the course assume?

We’ll ask you to pull out a calculator from time to time (but not all the time!) simply as this will help you really master the key ideas. The key thing is to have a curiosity and interest in what makes our planet tick!

What kind of learning activities will the course involve?

The activities are designed to use basic household objects, and our own senses, to engage with observations of the world, and to think about what these mean and lead to. We’ll get you to sense how cold or warm different objects get when left in the sun, and to observe how energy explains things we see and hear.

What difference will the course make to my life?

The course has the conviction that it is hard to care for or value things that we don’t appreciate or have never considered. Although harsh in certain places and times, the Earth’s surface is remarkably habitable. Many forms of life can make their way in many kinds of terrain and climate. What produces these conditions? How are they maintained? We will seek to answer those questions in rudimentary form at least.

What conversations will the course help to perform?

Courses often imagine a context in which the course material is discussed, and this one is no different. It imagines a setting with family or friends where you might have just learned of a news event involving a storm like a hurricane or thunderstorm, or where a community might have experienced a flood or a drought, or merely unusual weather. You might have heard of El Nino or climate change in the news. This course will give you a background to better engage in a conversation about these great matters, and offer a better sense of the complexity, challenge and wonder connected to living on the surface of such an energetic planet.

Starts : 2017-02-20
No votes
edX Free Engineering English Computer Science EdX Electronics TsinghuaX

Principles of Electric Circuits (20220214x) is one of the kernel courses in the broad EECS subjects. Almost all the required courses in EECS are based on the concepts learned in this course, so it’s the gateway to a qualified EECS engineer.

The main content of this course contains linear and nonlinear resistive circuits, time domain analysis of the dynamic circuits, and the steady state analysis of the dynamic circuits with sinusoidal excitations. Important concepts, e.g. filters, resonance, quiescent point, etc., cutting-edge elements, e.g. MOSFETs and Op Amps, etc., systematic analyzing tools, e.g. node method and phasor method, etc., and real-world engineering applications, e.g. square wave generator and pulse power supply for railgun, etc., will be discussed in depth.

In order to facilitate the learning for students with middle school level, we prepare the necessary knowledge for calculus and linear algebra in week 0. With your effort, we can show you the fantastic view of electricity.

电路原理课程是电类各专业最重要的一门学科基础课,后续各专业基础课和专业课都建立在这门课程的知识体系之上,因此是电类专业本科生的“看家 课”之一。电路原理课程的主要内容包括:线性电阻电路分析、非线性电阻电路分析、动态电路的时域分析和正弦激励下动态电路的稳态分析4大部分。清华大学电 路原理课程的教学包括电路分析基本方法、当代电路元器件、电路原理的实际工程应用等,为学生提供了扎实的基础和丰富的应用。


Starts : 2016-08-15
2 votes
edX Free Engineering English DelftX EdX Electronics Energy & Earth Sciences Environmental Studies Health & Safety

In the third edition of Solar Energy, you will learn to design a complete photovoltaic system. This course introduces the technology that converts solar energy into electricity, heat and solar fuels with a main focus on electricity generation. Photovoltaic (PV) devices are presented as advanced semiconductor devices that deliver electricity directly from sunlight. The emphasis is on understanding the working principle of a solar cell, fabrication of solar cells, PV module construction and the design of a PV system. You will gain a greater understanding of the principles of the photovoltaic conversion— the conversion of light into electricity. This course explores the advantages, limitations and challenges of different solar cell technologies, such as crystalline silicon solar cell technology, thin film solar cell technologies and the latest novel solar cell concepts as studied on lab-scale. We will discuss the specifications of solar modules and demonstrate how to design a complete solar system for any particular application.

Education Method

The class will consist of a collection of eight to twelve minute lecture videos, exercises, assignments and exams. Specified assignments and the three exams will determine the final grade. The new textbook on “Solar Energy, basics, technology and systems” from the Delft University of Technology will be available for the students on-line and free of charge. Your course staff will encourage and challenge you to learn from, and interact with, your fellow students by helping each other and sharing ideas and best practices, in the course forum. We were happy to see the incredible number of interesting student videos on solar energy systems from all over the world in the previous edition of this course. 

Professor Smets was the first ever recipient of the edX Prize for Exceptional Contributions to Online Teaching and Learning. His previous online courses attracted over 150,000 students worldwide, who were inspired to take their first steps in the transition to renewable energy. 


The course materials of this course are Copyright Delft University of Technology and are licensed under a Creative Commons Attribution-NonCommercial-ShareAlike (CC-BY-NC-SA) 4.0 International License.

Starts : 2013-09-15
14 votes
edX Free Closed [?] Engineering EdX

By being fluent in energy you will be able to think critically about energy issues.