Courses tagged with "Graduate" (73)

Sort by: Name, Rating, Price
Start time: Any, Upcoming, Recent started, New, Always Open
Price: Any, Free, Paid
Starts : 1997-01-01
12 votes
MIT OpenCourseWare (OCW) Free Physical Sciences Graduate MIT Nuclear Science and Engineering OpenCourseWare

Hands-on introduction to NMR presenting background in classical theory and instrumentation. Each lecture is followed by lab experiments to demonstrate ideas presented during the lecture and to familiarize students with state-of-the-art NMR instrumentation. Experiments cover topics ranging from spin dynamics to spectroscopy, and include imaging.

Starts : 2004-09-01
No votes
MIT OpenCourseWare (OCW) Free Closed [?] Physical Sciences Electrical Engineering and Computer Science Graduate MIT OpenCourseWare

The Acoustics of Speech and Hearing is an H-Level graduate course that reviews the physical processes involved in the production, propagation and reception of human speech. Particular attention is paid to how the acoustics and mechanics of the speech and auditory system define what sounds we are capable of producing and what sounds we can sense. Areas of discussion include:

  1. the acoustic cues used in determining the direction of a sound source,
  2. the acoustic and mechanical mechanisms involved in speech production and
  3. the acoustic and mechanical mechanism used to transduce and analyze sounds in the ear.

Related Content

Starts : 2003-02-01
16 votes
MIT OpenCourseWare (OCW) Free Computer Sciences Electrical Engineering and Computer Science Graduate MIT OpenCourseWare

In 6.635, topics covered include: special relativity, electrodynamics of moving media, waves in dispersive media, microstrip integrated circuits, quantum optics, remote sensing, radiative transfer theory, scattering by rough surfaces, effective permittivities, random media, Green's functions for planarly layered media, integral equations in electromagnetics, method of moments, time domain method of moments, EM waves in periodic structures: photonic crystals and negative refraction.

Starts : 2013-09-01
19 votes
MIT OpenCourseWare (OCW) Free Engineering Graduate Mechanical Engineering MIT OpenCourseWare

This course is a survey of principal concepts and methods of fluid dynamics. Topics include mass conservation, momentum, and energy equations for continua; Navier-Stokes equation for viscous flows; similarity and dimensional analysis; lubrication theory; boundary layers and separation; circulation and vorticity theorems; potential flow; introduction to turbulence; lift and drag; surface tension and surface tension driven flows.

Starts : 2003-09-01
12 votes
MIT OpenCourseWare (OCW) Free Physical Sciences Aeronautics and Astronautics Graduate MIT OpenCourseWare

The major focus of 16.13 is on boundary layers, and boundary layer theory subject to various flow assumptions, such as compressibility, turbulence, dimensionality, and heat transfer. Parameters influencing aerodynamic flows and transition and influence of boundary layers on outer potential flow are presented, along with associated stall and drag mechanisms. Numerical solution techniques and exercises are included.

Starts : 2006-02-01
16 votes
MIT OpenCourseWare (OCW) Free Physical Sciences Aeronautics and Astronautics Graduate MIT OpenCourseWare

This course introduces students to a quantitative approach to studying the problems of physiological adaptation in altered environments, especially microgravity and partial gravity environments. The course curriculum starts with an Introduction and Selected Topics, which provides background information on the physiological problems associated with human space flight, as well as reviewing terminology and key engineering concepts. Then curriculum modules on Bone Mechanics, Muscle Mechanics, Musculoskeletal Dynamics and Control, and the Cardiovascular System are presented. These modules start out with qualitative and biological information regarding the system and its adaptation, and progresses to a quantitative endpoint in which engineering methods are used to analyze specific problems and countermeasures. Additional course curriculum focuses on interdisciplinary topics, suggestions include extravehicular activity and life support. The final module consists of student term project work.

Starts : 2006-09-01
24 votes
MIT OpenCourseWare (OCW) Free Physical Sciences Aeronautics and Astronautics Graduate MIT OpenCourseWare

This course introduces the various aspects of present and future Air Traffic Control systems. Among the topics in the present system that we will discuss are the systems-analysis approach to problems of capacity and safety, surveillance, including the National Airspace System and Automated Terminal Radar Systems, navigation subsystem technology, aircraft guidance and control, communications, collision avoidance systems and sequencing and spacing in terminal areas. The class will then talk about future directions and development and have a critical discussion of past proposals and of probable future problem areas.

Starts : 2004-02-01
9 votes
MIT OpenCourseWare (OCW) Free Physical Sciences Aeronautics and Astronautics Graduate MIT OpenCourseWare

This course addresses the architecting of air transportation systems. The focus is on the conceptual phase of product definition, including technical, economic, market, environmental, regulatory, legal, manufacturing, and societal factors. It centers on a realistic system case study and includes a number of lectures from industry and government. Past examples include: the Very Large Transport Aircraft, a Supersonic Business Jet, and a Next Generation Cargo System. The course identifies the critical system level issues and analyzes them in depth via student team projects and individual assignments. The overall goal of the semester is to produce a business plan and a system specifications document that can be used to assess candidate systems.

Starts : 2004-09-01
10 votes
MIT OpenCourseWare (OCW) Free Physical Sciences Aeronautics and Astronautics Graduate MIT OpenCourseWare

This class includes a brief review of applied aerodynamics and modern approaches in aircraft stability and control. Topics covered include static stability and trim; stability derivatives and characteristic longitudinal and lateral-directional motions; and physical effects of the wing, fuselage, and tail on aircraft motion. Control methods and systems are discussed, with emphasis on flight vehicle stabilization by classical and modern control techniques; time and frequency domain analysis of control system performance; and human-pilot models and pilot-in-the-loop controls with applications. Other topics covered include V/STOL stability, dynamics, and control during transition from hover to forward flight; parameter sensitivity; and handling quality analysis of aircraft through variable flight conditions. There will be a brief discussion of motion at high angles-of-attack, roll coupling, and other nonlinear flight regimes.

Starts : 2005-09-01
13 votes
MIT OpenCourseWare (OCW) Free Engineering Aeronautics and Astronautics Graduate MIT OpenCourseWare

16.885J offers a holistic view of the aircraft as a system, covering: basic systems engineering; cost and weight estimation; basic aircraft performance; safety and reliability; lifecycle topics; aircraft subsystems; risk analysis and management; and system realization. Small student teams retrospectively analyze an existing aircraft covering: key design drivers and decisions; aircraft attributes and subsystems; and operational experience. Oral and written versions of the case study are delivered. For the Fall 2005 term, the class focuses on a systems engineering analysis of the Space Shuttle. It offers study of both design and operations of the shuttle, with frequent lectures by outside experts. Students choose specific shuttle systems for detailed analysis and develop new subsystem designs using state of the art technology.

Starts : 2006-02-01
12 votes
MIT OpenCourseWare (OCW) Free Business Aeronautics and Astronautics Graduate MIT OpenCourseWare

This course provides an overview of airline management decision processes with a focus on economic issues and their relationship to operations planning models and decision support tools. It emphasizes the application of economic models of demand, pricing, costs, and supply to airline markets and networks, and it examines industry practice and emerging methods for fleet planning, route network design, scheduling, pricing and revenue management.

Starts : 2006-09-01
16 votes
MIT OpenCourseWare (OCW) Free Physical Sciences Graduate MIT Nuclear Science and Engineering OpenCourseWare

This course explores elements of nuclear physics for engineering students. It covers basic properties of the nucleus and nuclear radiations; quantum mechanical calculations of deuteron bound-state wave function and energy; n-p scattering cross section; transition probability per unit time and barrier transmission probability. It also covers binding energy and nuclear stability; interactions of charged particles, neutrons, and gamma rays with matter; radioactive decays; and energetics and general cross section behavior in nuclear reactions.

Starts : 2006-09-01
9 votes
MIT OpenCourseWare (OCW) Free Computer Sciences Electrical Engineering and Computer Science Graduate MIT OpenCourseWare

6.728 is offered under the department's "Devices, Circuits, and Systems" concentration. The course covers concepts in elementary quantum mechanics and statistical physics, introduces applied quantum physics, and emphasizes an experimental basis for quantum mechanics. Concepts covered include: Schrodinger's equation applied to the free particle, tunneling, the harmonic oscillator, and hydrogen atom, variational methods, Fermi-Dirac, Bose-Einstein, and Boltzmann distribution functions, and simple models for metals, semiconductors, and devices such as electron microscopes, scanning tunneling microscope, thermonic emitters, atomic force microscope, and others.

Starts : 2005-09-01
7 votes
MIT OpenCourseWare (OCW) Free Computer Sciences Electrical Engineering and Computer Science Graduate MIT OpenCourseWare

This course provides a phenomenological approach to superconductivity, with emphasis on superconducting electronics. Topics include: electrodynamics of superconductors, London's model, flux quantization, Josephson Junctions, superconducting quantum devices, equivalent circuits, high-speed superconducting electronics, and quantized circuits for quantum computing. The course also provides an overview of type II superconductors, critical magnetic fields, pinning, the critical state model, superconducting materials, and microscopic theory of superconductivity.

Starts : 2008-09-01
8 votes
MIT OpenCourseWare (OCW) Free Physical Sciences Aeronautics and Astronautics Graduate MIT OpenCourseWare

This course covers the fundamentals of astrodynamics, focusing on the two-body orbital initial-value and boundary-value problems with applications to space vehicle navigation and guidance for lunar and planetary missions, including both powered flight and midcourse maneuvers. Other topics include celestial mechanics, Kepler's problem, Lambert's problem, orbit determination, multi-body methods, mission planning, and recursive algorithms for space navigation. Selected applications from the Apollo, Space Shuttle, and Mars exploration programs are also discussed.

Starts : 2004-09-01
10 votes
MIT OpenCourseWare (OCW) Free Physical Sciences Graduate MIT OpenCourseWare Physics

This is the second course in a two-semester sequence on astrophysics. Topics include galactic dynamics, groups and clusters on galaxies, phenomenological cosmology, Newtonian cosmology, Roberston-Walker models, and galaxy formation.

Starts : 2008-09-01
11 votes
MIT OpenCourseWare (OCW) Free Physical Sciences Atmospheric Earth Graduate MIT OpenCourseWare Planetary Sciences

This is an introduction to the physics of atmospheric radiation and remote sensing including use of computer codes. Subjects covered include: radiative transfer equation including emission and scattering, spectroscopy, Mie theory, and numerical solutions. We examine the solution of inverse problems in remote sensing of atmospheric temperature and composition.

Starts : 2013-02-01
6 votes
MIT OpenCourseWare (OCW) Free Physical Sciences Graduate MIT OpenCourseWare Physics

This is the second of a two-semester subject sequence beginning with Atomic and Optical Physics I (8.421) that provides the foundations for contemporary research in selected areas of atomic and optical physics. Topics covered include non-classical states of light–squeezed states; multi-photon processes, Raman scattering; coherence–level crossings, quantum beats, double resonance, superradiance; trapping and cooling-light forces, laser cooling, atom optics, spectroscopy of trapped atoms and ions; atomic interactions–classical collisions, quantum scattering theory, ultracold collisions; and experimental methods.

Starts : 2005-02-01
11 votes
MIT OpenCourseWare (OCW) Free Physical Sciences Graduate Materials Science and Engineering MIT OpenCourseWare

This course uses the theory and application of atomistic computer simulations to model, understand, and predict the properties of real materials. Specific topics include: energy models from classical potentials to first-principles approaches; density functional theory and the total-energy pseudopotential method; errors and accuracy of quantitative predictions: thermodynamic ensembles, Monte Carlo sampling and molecular dynamics simulations; free energy and phase transitions; fluctuations and transport properties; and coarse-graining approaches and mesoscale models. The course employs case studies from industrial applications of advanced materials to nanotechnology. Several laboratories will give students direct experience with simulations of classical force fields, electronic-structure approaches, molecular dynamics, and Monte Carlo.

This course was also taught as part of the Singapore-MIT Alliance (SMA) programme as course number SMA 5107 (Atomistic Computer Modeling of Materials).

Acknowledgements

Support for this course has come from the National Science Foundation's Division of Materials Research (grant DMR-0304019) and from the Singapore-MIT Alliance.

Starts : 2009-02-01
10 votes
MIT OpenCourseWare (OCW) Free Physical Sciences Aeronautics and Astronautics Graduate MIT OpenCourseWare

This course is offered for graduate students who are interested in the interdisciplinary study of bio-inspired structures. The intent is to introduce students to newly inspired modern advanced structures and their applications. It aims to link traditional advanced composites to bio-inspired structures and to discuss their generic properties. A link between materials design, strength and structural behavior at different levels (material, element, structural and system levels) is made. For each level, various concepts will be introduced. The importance of structural, dynamic, thermodynamic and kinetic theories related to such processing is highlighted. The pedagogy is based on active learning and a balance of guest lectures and hands-on activities.