Courses tagged with "Intellectual property" (7)

Sort by: Name, Rating, Price
Start time: Any, Upcoming, Recent started, New, Always Open
Price: Any, Free, Paid
Starts : 2004-09-01
9 votes
MIT OpenCourseWare (OCW) Free Life Sciences Infor Information environments Information Theory Intellectual property Nutrition

This class analyzes complex biological processes from the molecular, cellular, extracellular, and organ levels of hierarchy. Emphasis is placed on the basic biochemical and biophysical principles that govern these processes. Examples of processes to be studied include chemotaxis, the fixation of nitrogen into organic biological molecules, growth factor and hormone mediated signaling cascades, and signaling cascades leading to cell death in response to DNA damage. In each case, the availability of a resource, or the presence of a stimulus, results in some biochemical pathways being turned on while others are turned off. The course examines the dynamic aspects of these processes and details how biochemical mechanistic themes impinge on molecular/cellular/tissue/organ-level functions. Chemical and quantitative views of the interplay of multiple pathways as biological networks are emphasized. Student work culminates in the preparation of a unique grant application in an area of biological networks.

Starts : 2012-09-01
12 votes
MIT OpenCourseWare (OCW) Free Physical Sciences Infor Information control Information Theory Intellectual property Nutrition

This course focuses on computational and experimental analysis of biological systems across a hierarchy of scales, including genetic, molecular, cellular, and cell population levels. The two central themes of the course are modeling of complex dynamic systems and protein design and engineering. Topics include gene sequence analysis, molecular modeling, metabolic and gene regulation networks, signal transduction pathways and cell populations in tissues. Emphasis is placed on experimental methods, quantitative analysis, and computational modeling.

3 votes
Saylor.org Free Closed [?] Life Sciences Chemical reactions (stoichiometry) Hormonal+activity Information policy Intellectual property Janux Nutrition

Even in ancient times, scholars believed that diseases could be spread by organisms too small to be seen by the naked eye. Before we discovered that bacteria cells were the real culprits, many attributed disease to other sources. Now that scientists have definitively identified the microscopic causes of various infectious diseases, microbiology, or the study of microscopic-sized organisms, has become an increasingly important field in biology and in the larger biomedical community. Most microbes are harmless. Some of them are essential for life on Earth, e.g. through their ability to fix nitrogen. Biotechnology, which is truly the industry of our times, takes advantage of microbes for the production of a variety of complex substances, and it also mass-produces natural and engineered microbes for human use. This course will cover a range of diverse areas of microbiology, including virology, bacteriology, and applied microbiology. This course will focus on the medical aspects of microbiology, as medical res…

2 votes
Study.com Free Closed [?] Life Sciences Chemical reactions (stoichiometry) Hormonal+activity Information policy Intellectual property Janux SQL+Server

Get a basic overview of microbiology before exploring advanced topics like bacterial cell morphology, nitrogen fixation and protozoan diseases through this online Education Portal course, Biology 103: Microbiology. Watch our video lessons on STDs, bacterial diseases and foodborne illnesses as you prepare to earn real college credit through the Microbiology Excelsior Exam . Though the subjects covered in these lessons are somewhat intense, our experienced, knowledgeable instructors have kept the videos brief, engaging and easy to follow. You also can benefit from the multiple-choice quizzes and written transcripts that complement each video.

Starts : 2009-09-01
12 votes
MIT OpenCourseWare (OCW) Free Life Sciences Infor Information environments Information Theory Intellectual property Nutrition

This course covers the principles of materials science and cell biology underlying the design of medical implants, artificial organs, and matrices for tissue engineering. Methods for biomaterials surface characterization and analysis of protein adsorption on biomaterials. Molecular and cellular interactions with biomaterials are analyzed in terms of unit cell processes, such as matrix synthesis, degradation, and contraction. Mechanisms underlying wound healing and tissue remodeling following implantation in various organs. Tissue and organ regeneration. Design of implants and prostheses based on control of biomaterials-tissue interactions. Comparative analysis of intact, biodegradable, and bioreplaceable implants by reference to case studies. Criteria for restoration of physiological function for tissues and organs.

Starts : 2004-09-01
9 votes
MIT OpenCourseWare (OCW) Free Life Sciences Infor Information environments Information Theory Intellectual property Nutrition

This subject deals primarily with kinetic and equilibrium mathematical models of biomolecular interactions, as well as the application of these quantitative analyses to biological problems across a wide range of levels of organization, from individual molecular interactions to populations of cells.

Starts : 2006-09-01
13 votes
MIT OpenCourseWare (OCW) Free Life Sciences Infor Information control Information Theory Intellectual property Nutrition

This course covers introductory microbiology from a systems perspective, considering microbial diversity, population dynamics, and genomics. Emphasis is placed on the delicate balance between microbes and humans, and the changes that result in the emergence of infectious diseases and antimicrobial resistance. The case study approach covers such topics as vaccines, toxins, biodefense, and infections including Legionnaire’s disease, tuberculosis, Helicobacter pylori, and plague.

Trusted paper writing service WriteMyPaper.Today will write the papers of any difficulty.