Courses tagged with "MIT" (2510)

Sort by: Name, Rating, Price
Start time: Any, Upcoming, Recent started, New, Always Open
Price: Any, Free, Paid
Starts : 2002-09-01
13 votes
MIT OpenCourseWare (OCW) Free Physical Sciences Aeronautics and Astronautics MIT OpenCourseWare Undergraduate

This course is taught in four main parts. The first is a review of fundamental thermodynamic concepts (e.g. energy exchange in propulsion and power processes), and is followed by the second law (e.g. reversibility and irreversibility, lost work). Next are applications of thermodynamics to engineering systems (e.g. propulsion and power cycles, thermo chemistry), and the course concludes with fundamentals of heat transfer (e.g. heat exchange in aerospace devices).

Starts : 2012-09-01
11 votes
MIT OpenCourseWare (OCW) Free Physical Sciences Aeronautics and Astronautics MIT OpenCourseWare Undergraduate

This course introduces the design of feedback control systems as applied to a variety of air and spacecraft systems. Topics include the properties and advantages of feedback systems, time-domain and frequency-domain performance measures, stability and degree of stability, the Root locus method, Nyquist criterion, frequency-domain design, and state space methods.

Starts : 2009-09-01
10 votes
MIT OpenCourseWare (OCW) Free Physical Sciences Aeronautics and Astronautics MIT OpenCourseWare Undergraduate

This course covers the fundamentals of Newtonian mechanics, including kinematics, motion relative to accelerated reference frames, work and energy, impulse and momentum, 2D and 3D rigid body dynamics. The course pays special attention to applications in aerospace engineering including introductory topics in orbital mechanics, flight dynamics, inertial navigation and attitude dynamics. By the end of the semester, students should be able to construct idealized (particle and rigid body) dynamical models and predict model response to applied forces using Newtonian mechanics.

Starts : 2005-09-01
9 votes
MIT OpenCourseWare (OCW) Free Physical Sciences Aeronautics and Astronautics MIT OpenCourseWare Undergraduate

This course extends fluid mechanic concepts from Unified Engineering to the aerodynamic performance of wings and bodies in sub/supersonic regimes. 16.100 generally has four components: subsonic potential flows, including source/vortex panel methods; viscous flows, including laminar and turbulent boundary layers; aerodynamics of airfoils and wings, including thin airfoil theory, lifting line theory, and panel method/interacting boundary layer methods; and supersonic and hypersonic airfoil theory. Course material varies each year depending upon the focus of the design problem.

Starts : 2003-09-01
12 votes
MIT OpenCourseWare (OCW) Free Physical Sciences Aeronautics and Astronautics Graduate MIT OpenCourseWare

The major focus of 16.13 is on boundary layers, and boundary layer theory subject to various flow assumptions, such as compressibility, turbulence, dimensionality, and heat transfer. Parameters influencing aerodynamic flows and transition and influence of boundary layers on outer potential flow are presented, along with associated stall and drag mechanisms. Numerical solution techniques and exercises are included.

Starts : 2002-09-01
10 votes
MIT OpenCourseWare (OCW) Free Physical Sciences Aeronautics and Astronautics MIT OpenCourseWare Undergraduate

Applies solid mechanics to analysis of high-technology structures. Structural design considerations. Review of three-dimensional elasticity theory; stress, strain, anisotropic materials, and heating effects. Two-dimensional plane stress and plane strain problems. Torsion theory for arbitrary sections. Bending of unsymmetrical section and mixed material beams. Bending, shear, and torsion of thin-wall shell beams. Buckling of columns and stability phenomena. Introduction to structural dynamics. Exercises in the design of general and aerospace structures.

Starts : 2006-09-01
17 votes
MIT OpenCourseWare (OCW) Free Visual & Performing Arts Architecture Graduate MIT OpenCourseWare

This seminar engages in the notion of space from various points of departure. The goal is first of all to engage in the term and secondly to examine possibilities of art, architecture within urban settings in order to produce what is your interpretation of space.

Starts : 2004-09-01
5 votes
MIT OpenCourseWare (OCW) Free Social Sciences Architecture Graduate MIT OpenCourseWare

An analysis of historical structures is presented themed sections based around construction materials. Structures from all periods of history are analyzed. The goal of the class is to provide an understanding of the preservation of historic structures for all students.

Starts : 2006-02-01
18 votes
MIT OpenCourseWare (OCW) Free Health and Welfare Athletics MIT OpenCourseWare Physical Education and Recreation Undergraduate

This 12 session course is designed for the beginning or novice archer and uses recurve indoor target bows and equipment. The purpose of the course is to introduce students to the basic techniques of indoor target archery emphasizing the care and use of equipment, range safety, stance and shooting techniques, scoring and competition.

Starts : 2003-09-01
13 votes
MIT OpenCourseWare (OCW) Free Computer Sciences Aeronautics and Astronautics Graduate MIT OpenCourseWare

16.225 is a graduate level course on Computational Mechanics of Materials. The primary focus of this course is on the teaching of state-of-the-art numerical methods for the analysis of the nonlinear continuum response of materials. The range of material behavior considered in this course includes: linear and finite deformation elasticity, inelasticity and dynamics. Numerical formulation and algorithms include: variational formulation and variational constitutive updates, finite element discretization, error estimation, constrained problems, time integration algorithms and convergence analysis. There is a strong emphasis on the (parallel) computer implementation of algorithms in programming assignments. The application to real engineering applications and problems in engineering science is stressed throughout the course.

Starts : 2008-02-01
11 votes
MIT OpenCourseWare (OCW) Free Computer Sciences Aeronautics and Astronautics Graduate MIT OpenCourseWare

This course studies basic optimization and the principles of optimal control. It considers deterministic and stochastic problems for both discrete and continuous systems. The course covers solution methods including numerical search algorithms, model predictive control, dynamic programming, variational calculus, and approaches based on Pontryagin's maximum principle, and it includes many examples and applications of the theory.

Starts : 2004-09-01
10 votes
MIT OpenCourseWare (OCW) Free Physical Sciences Aeronautics and Astronautics Graduate MIT OpenCourseWare

This class includes a brief review of applied aerodynamics and modern approaches in aircraft stability and control. Topics covered include static stability and trim; stability derivatives and characteristic longitudinal and lateral-directional motions; and physical effects of the wing, fuselage, and tail on aircraft motion. Control methods and systems are discussed, with emphasis on flight vehicle stabilization by classical and modern control techniques; time and frequency domain analysis of control system performance; and human-pilot models and pilot-in-the-loop controls with applications. Other topics covered include V/STOL stability, dynamics, and control during transition from hover to forward flight; parameter sensitivity; and handling quality analysis of aircraft through variable flight conditions. There will be a brief discussion of motion at high angles-of-attack, roll coupling, and other nonlinear flight regimes.

Starts : 2003-09-01
11 votes
MIT OpenCourseWare (OCW) Free Computer Sciences Electrical Engineering and Computer Science Graduate MIT OpenCourseWare

This course provides an introduction to nonlinear deterministic dynamical systems. Topics covered include: nonlinear ordinary differential equations; planar autonomous systems; fundamental theory: Picard iteration, contraction mapping theorem, and Bellman-Gronwall lemma; stability of equilibria by Lyapunov's first and second methods; feedback linearization; and application to nonlinear circuits and control systems.

Starts : 2009-02-01
11 votes
MIT OpenCourseWare (OCW) Free Physical Sciences Aeronautics and Astronautics MIT OpenCourseWare Undergraduate

This course will cover fundamentals of digital communications and networking. We will study the basics of information theory, sampling and quantization, coding, modulation, signal detection and system performance in the presence of noise. The study of data networking will include multiple access, reliable packet transmission, routing and protocols of the internet. The concepts taught in class will be discussed in the context of aerospace communication systems: aircraft communications, satellite communications, and deep space communications.

Starts : 2015-09-01
10 votes
MIT OpenCourseWare (OCW) Free Biological Engineering Graduate MIT OpenCourseWare

This course covers the fundamental driving forces for transport—chemical gradients, electrical interactions, and fluid flow—as applied to the biology and biophysics of molecules, cells, and tissues.

Starts : 2004-09-01
12 votes
MIT OpenCourseWare (OCW) Free Life Sciences Biology MIT OpenCourseWare Undergraduate

This course discusses the principles of genetics with application to the study of biological function at the level of molecules, cells, and multicellular organisms, including humans. The topics include: structure and function of genes, chromosomes and genomes, biological variation resulting from recombination, mutation, and selection, population genetics, use of genetic methods to analyze protein function, gene regulation and inherited disease.

Starts : 2012-02-01
17 votes
MIT OpenCourseWare (OCW) Free Life Sciences Biology MIT OpenCourseWare Undergraduate

This course serves as an introduction to the structure and function of the nervous system. Emphasis is placed on the cellular properties of neurons and other excitable cells. Topics covered include the structure and biophysical properties of excitable cells, synaptic transmission, neurochemistry, neurodevelopment, and the integration of information in simple systems and the visual system.

Starts : 2002-09-01
20 votes
MIT OpenCourseWare (OCW) Free Computer Sciences Electrical Engineering and Computer Science Graduate MIT OpenCourseWare

6.263J / 16.37J focuses on the fundamentals of data communication networks. One goal is to give some insight into the rationale of why networks are structured the way they are today and to understand the issues facing the designers of next-generation data networks. Much of the course focuses on network algorithms and their performance. Students are expected to have a strong mathematical background and an understanding of probability theory. Topics discussed include: layered network architecture, Link Layer protocols, high-speed packet switching, queueing theory, Local Area Networks, and Wide Area Networking issues, including routing and flow control.

Starts : 2010-09-01
18 votes
MIT OpenCourseWare (OCW) Free Computer Sciences Aeronautics and Astronautics MIT OpenCourseWare Undergraduate

This course surveys a variety of reasoning, optimization and decision making methodologies for creating highly autonomous systems and decision support aids. The focus is on principles, algorithms, and their application, taken from the disciplines of artificial intelligence and operations research.

Reasoning paradigms include logic and deduction, heuristic and constraint-based search, model-based reasoning, planning and execution, and machine learning. Optimization paradigms include linear programming, integer programming, and dynamic programming. Decision-making paradigms include decision theoretic planning, and Markov decision processes.

Starts : 2005-09-01
10 votes
MIT OpenCourseWare (OCW) Free Physical Sciences Aeronautics and Astronautics Graduate MIT OpenCourseWare

This class focuses on chemical rocket propulsion systems for launch, orbital, and interplanetary flight. It studies the modeling of solid, liquid-bipropellant, and hybrid rocket engines. Thermochemistry, prediction of specific impulse, and nozzle flows including real gas and kinetic effects will also be covered. Other topics to be covered include structural constraints, propellant feed systems, turbopumps, and combustion processes in solid, liquid, and hybrid rockets.

Trusted paper writing service WriteMyPaper.Today will write the papers of any difficulty.