# Courses tagged with "Mathematics" (77)

You have probably been wondering whether our powers of algebraic problem solving break down if we divide by the variable or we have entire expressions in denominator of a fraction. Well, they don't! In this topic, you'll learn how to interpret and manipulate rational expressions (when you have one algebraic expression divided by another)!. Simplifying Rational Expressions Introduction. Simplifying Rational Expressions 1. Dividing polynomials by binomials 1. Simplifying Rational Expressions 2. Dividing polynomials by binomials 2. Simplifying rational expressions 2. Simplifying Rational Expressions 3. Simplifying Rational Expressions Example 2. Dividing polynomials by binomials 3. Simplifying rational expressions 3. Simplifying rational expressions 4. Adding and Subtracting Rational Expressions. Adding and Subtracting Rational Expressions 2. Adding and Subtracting Rational Expressions 3. Subtracting Rational Expressions. Simplifying First for Subtracting Rational Expressions. Adding and subtracting rational expressions 0.5. Adding and subtracting rational expressions 1. Adding and subtracting rational expressions 1.5. Adding and subtracting rational expressions 2. Adding and subtracting rational expressions 3. Multiplying and Simplifying Rational Expressions. Multiplying and Dividing Rational Expressions 1. Multiplying and Dividing Rational Expressions 2. Multiplying and Dividing Rational Expressions 3. Multiplying and dividing rational expressions 1. Multiplying and dividing rational expressions 2. Multiplying and dividing rational expressions 3. Multiplying and dividing rational expressions 4. Multiplying and dividing rational expressions 5. Rationalizing Denominators of Expressions. Asymptotes of Rational Functions. Another Rational Function Graph Example. A Third Example of Graphing a Rational Function. Partial Fraction Expansion 1. Partial Fraction Expansion 2. Partial Fraction Expansion 3. Partial fraction expansion. Ex 1 Multi step equation. Solving rational equations 1. Rational Equations. Solving Rational Equations 1. Solving Rational Equations 2. Solving Rational Equations 3. Applying Rational Equations 1. Applying Rational Equations 2. Applying Rational Equations 3. Solving rational equations 2. Extraneous Solutions to Rational Equations. Extraneous solutions. Rational Inequalities. Rational Inequalities 2. Simplifying Rational Expressions Introduction. Simplifying Rational Expressions 1. Dividing polynomials by binomials 1. Simplifying Rational Expressions 2. Dividing polynomials by binomials 2. Simplifying rational expressions 2. Simplifying Rational Expressions 3. Simplifying Rational Expressions Example 2. Dividing polynomials by binomials 3. Simplifying rational expressions 3. Simplifying rational expressions 4. Adding and Subtracting Rational Expressions. Adding and Subtracting Rational Expressions 2. Adding and Subtracting Rational Expressions 3. Subtracting Rational Expressions. Simplifying First for Subtracting Rational Expressions. Adding and subtracting rational expressions 0.5. Adding and subtracting rational expressions 1. Adding and subtracting rational expressions 1.5. Adding and subtracting rational expressions 2. Adding and subtracting rational expressions 3. Multiplying and Simplifying Rational Expressions. Multiplying and Dividing Rational Expressions 1. Multiplying and Dividing Rational Expressions 2. Multiplying and Dividing Rational Expressions 3. Multiplying and dividing rational expressions 1. Multiplying and dividing rational expressions 2. Multiplying and dividing rational expressions 3. Multiplying and dividing rational expressions 4. Multiplying and dividing rational expressions 5. Rationalizing Denominators of Expressions. Asymptotes of Rational Functions. Another Rational Function Graph Example. A Third Example of Graphing a Rational Function. Partial Fraction Expansion 1. Partial Fraction Expansion 2. Partial Fraction Expansion 3. Partial fraction expansion. Ex 1 Multi step equation. Solving rational equations 1. Rational Equations. Solving Rational Equations 1. Solving Rational Equations 2. Solving Rational Equations 3. Applying Rational Equations 1. Applying Rational Equations 2. Applying Rational Equations 3. Solving rational equations 2. Extraneous Solutions to Rational Equations. Extraneous solutions. Rational Inequalities. Rational Inequalities 2.

Solving and writing algebraic ratios and proportions. Solving rational equations. Introduction to Ratios (new HD version). Understanding Proportions. Ratios as Fractions in Simplest Form. Simplifying Rates and Ratios. Find an Unknown in a Proportion. Ratio and Proportion. Find an Unknown in a Proportion 2. Another Take on the Rate Problem. Finding Unit Rates. Finding Unit Prices. Writing Proportions. Ratio problem with basic algebra (new HD). More advanced ratio problem--with Algebra (HD version). Alternate Solution to Ratio Problem (HD Version). Advanced ratio problems. Unit conversion. Conversion between metric units. Converting within the metric system. Converting pounds to ounces. Converting Gallons to quarts pints and cups. Converting Farenheit to Celsius. Comparing Celsius and Farenheit temperature scales. Applying the Metric System. U.S. Customary and Metric units. Converting Yards into Inches. Unit Conversion with Fractions. Performing arithmetic calculations on units of volume. Application problems involving units of weight. Solving application problems involving units of volume. Unit Conversion Example: Drug Dosage. Perimeter and Unit Conversion. Rational Equations. Solving Rational Equations 1. Solving Rational Equations 2. Solving Rational Equations 3. Applying Rational Equations 1. Applying Rational Equations 2. Applying Rational Equations 3. Extraneous Solutions to Rational Equations. Rational Inequalities 2.

What ratios and proportions are. Using them to solve problems in the real world. Ratio problem with basic algebra (new HD). Writing proportions. Writing proportions. Find an Unknown in a Proportion. Find an Unknown in a Proportion 2. Proportions 1. Proportions 2 exercise examples. Proportions 2. Constructing proportions to solve application problems. Constructing proportions to solve application problems. The Golden Ratio. Advanced ratio problems. More advanced ratio problem--with Algebra (HD version). Another Take on the Rate Problem. Alternate Solution to Ratio Problem (HD Version). Mountain height word problem. Ratio problem with basic algebra (new HD). Writing proportions. Writing proportions. Find an Unknown in a Proportion. Find an Unknown in a Proportion 2. Proportions 1. Proportions 2 exercise examples. Proportions 2. Constructing proportions to solve application problems. Constructing proportions to solve application problems. The Golden Ratio. Advanced ratio problems. More advanced ratio problem--with Algebra (HD version). Another Take on the Rate Problem. Alternate Solution to Ratio Problem (HD Version). Mountain height word problem.

Solving a system of equations or inequalities in two variables by elimination, substitution, and graphing. Trolls, Tolls, and Systems of Equations. Solving the Troll Riddle Visually. Solving Systems Graphically. Graphing systems of equations. King's Cupcakes: Solving Systems by Elimination. How many bags of potato chips do people eat?. Simple Elimination Practice. Systems of equations with simple elimination. Systems with Elimination Practice. Systems of equations with elimination. Talking bird solves systems with substitution. Practice using substitution for systems. Systems of equations with substitution. Systems of equations. Systems of equations word problems. Solving linear systems by graphing. Graphing systems of equations. Solving linear systems by substitution. Systems of equations with substitution. Solving systems of equations by elimination. Systems of equations with simple elimination. Solving systems of equations by multiplication. Systems of equations with elimination. Systems of equations. Special types of linear systems. Solutions to systems of equations. Old video on systems of equations. Solving linear systems by graphing. Testing a solution for a system of equations. Graphing Systems of Equations. Graphical Systems Application Problem. Example 2: Graphically Solving Systems. Example 3: Graphically Solving Systems. Solving Systems Graphically. Graphing systems of equations. Inconsistent systems of equations. Infinite solutions to systems. Consistent and Inconsistent Systems. Independent and Dependent Systems. Practice thinking about number of solutions to systems. Graphical solutions to systems. Solutions to systems of equations. Constructing solutions to systems of equations. Constructing consistent and inconsistent systems. Example 1: Solving systems by substitution. Example 2: Solving systems by substitution. Example 3: Solving systems by substitution. The Substitution Method. Substitution Method 2. Substitution Method 3. Practice using substitution for systems. Systems of equations with substitution. Example 1: Solving systems by elimination. Example 2: Solving systems by elimination. Addition Elimination Method 1. Addition Elimination Method 2. Addition Elimination Method 3. Addition Elimination Method 4. Example 3: Solving systems by elimination. Simple Elimination Practice. Systems of equations with simple elimination. Systems with Elimination Practice. Systems of equations with elimination. Using a system of equations to find the price of apples and oranges. Linear systems word problem with substitution. Systems of equations word problems. Systems of equation to realize you are getting ripped off. Thinking about multiple solutions to a system of equations. Understanding systems of equations word problems. Systems and rate problems. Systems and rate problems 2. Systems and rate problems 3. Officer on Horseback. Two Passing Bicycles Word Problem. Passed Bike Word Problem. System of equations for passing trains problem. Overtaking Word Problem. Multple examples of multiple constraint problems. Testing Solutions for a System of Inequalities. Visualizing the solution set for a system of inequalities. Graphing systems of inequalities. Graphing systems of inequalities 2. Graphing systems of inequalities. Graphing and solving systems of inequalities. System of Inequalities Application. CA Algebra I: Systems of Inequalities. Systems of Three Variables. Systems of Three Variables 2. Solutions to Three Variable System. Solutions to Three Variable System 2. Three Equation Application Problem. Non-Linear Systems of Equations 3. Non-Linear Systems of Equations 1. Non-Linear Systems of Equations 2. Non-Linear Systems of Equations 3. Systems of nonlinear equations 1. Systems of nonlinear equations 2. Systems of nonlinear equations 3. Systems of nonlinear equations. Trolls, Tolls, and Systems of Equations. Solving the Troll Riddle Visually. Solving Systems Graphically. Graphing systems of equations. King's Cupcakes: Solving Systems by Elimination. How many bags of potato chips do people eat?. Simple Elimination Practice. Systems of equations with simple elimination. Systems with Elimination Practice. Systems of equations with elimination. Talking bird solves systems with substitution. Practice using substitution for systems. Systems of equations with substitution. Systems of equations. Systems of equations word problems. Solving linear systems by graphing. Graphing systems of equations. Solving linear systems by substitution. Systems of equations with substitution. Solving systems of equations by elimination. Systems of equations with simple elimination. Solving systems of equations by multiplication. Systems of equations with elimination. Systems of equations. Special types of linear systems. Solutions to systems of equations. Old video on systems of equations. Solving linear systems by graphing. Testing a solution for a system of equations. Graphing Systems of Equations. Graphical Systems Application Problem. Example 2: Graphically Solving Systems. Example 3: Graphically Solving Systems. Solving Systems Graphically. Graphing systems of equations. Inconsistent systems of equations. Infinite solutions to systems. Consistent and Inconsistent Systems. Independent and Dependent Systems. Practice thinking about number of solutions to systems. Graphical solutions to systems. Solutions to systems of equations. Constructing solutions to systems of equations. Constructing consistent and inconsistent systems. Example 1: Solving systems by substitution. Example 2: Solving systems by substitution. Example 3: Solving systems by substitution. The Substitution Method. Substitution Method 2. Substitution Method 3. Practice using substitution for systems. Systems of equations with substitution. Example 1: Solving systems by elimination. Example 2: Solving systems by elimination. Addition Elimination Method 1. Addition Elimination Method 2. Addition Elimination Method 3. Addition Elimination Method 4. Example 3: Solving systems by elimination. Simple Elimination Practice. Systems of equations with simple elimination. Systems with Elimination Practice. Systems of equations with elimination. Using a system of equations to find the price of apples and oranges. Linear systems word problem with substitution. Systems of equations word problems. Systems of equation to realize you are getting ripped off. Thinking about multiple solutions to a system of equations. Understanding systems of equations word problems. Systems and rate problems. Systems and rate problems 2. Systems and rate problems 3. Officer on Horseback. Two Passing Bicycles Word Problem. Passed Bike Word Problem. System of equations for passing trains problem. Overtaking Word Problem. Multple examples of multiple constraint problems. Testing Solutions for a System of Inequalities. Visualizing the solution set for a system of inequalities. Graphing systems of inequalities. Graphing systems of inequalities 2. Graphing systems of inequalities. Graphing and solving systems of inequalities. System of Inequalities Application. CA Algebra I: Systems of Inequalities. Systems of Three Variables. Systems of Three Variables 2. Solutions to Three Variable System. Solutions to Three Variable System 2. Three Equation Application Problem. Non-Linear Systems of Equations 3. Non-Linear Systems of Equations 1. Non-Linear Systems of Equations 2. Non-Linear Systems of Equations 3. Systems of nonlinear equations 1. Systems of nonlinear equations 2. Systems of nonlinear equations 3. Systems of nonlinear equations.

This course is taught in French Vous voulez comprendre l'arithmétique ? Vous souhaitez découvrir une application des mathématiques à la vie quotidienne ? Ce cours est fait pour vous ! De niveau première année d'université, vous apprendrez les bases de l'arithmétique (division euclidienne, théorème de Bézout, nombres premiers, congruence). Vous vous êtes déjà demandé comment sont sécurisées les transactions sur Internet ? Vous découvrirez les bases de la cryptographie, en commençant par les codes les plus simples pour aboutir au code RSA. Le code RSA est le code utilisé pour crypter les communications sur internet. Il est basé sur de l'arithmétique assez simple que l'on comprendra en détail. Vous pourrez en plus mettre en pratique vos connaissances par l'apprentissage de notions sur le langage de programmation Python. Vous travaillerez à l'aide de cours écrits et de vidéos, d'exercices corrigés en vidéos, des quiz, des travaux pratiques. Le cours est entièrement gratuit !

In this course, you will look at the properties behind the basic concepts of probability and statistics and focus on applications of statistical knowledge. You will learn about how statistics and probability work together. The subject of statistics involves the study of methods for collecting, summarizing, and interpreting data. Statistics formalizes the process of making decisions, and this course is designed to help you use statistical literacy to make better decisions. Note that this course has applications for the natural sciences, economics, computer science, finance, psychology, sociology, criminology, and many other fields. We read data in articles and reports every day. After finishing this course, you should be comfortable evaluating an author's use of data. You will be able to extract information from articles and display that information effectively. You will also be able to understand the basics of how to draw statistical conclusions. This course will begin with descriptive statistic…

The laws of nature are expressed as differential equations. Scientists and engineers must know how to model the world in terms of differential equations, and how to solve those equations and interpret the solutions. This course focuses on the equations and techniques most useful in science and engineering.

#### Course Format

This course has been designed for independent study. It provides everything you will need to understand the concepts covered in the course. The materials include:

**Lecture Videos**by Professor Arthur Mattuck.**Course Notes**on every topic.**Practice Problems**with**Solutions**.**Problem Solving Videos**taught by experienced MIT Recitation Instructors.**Problem Sets**to do on your own with**Solutions**to check your answers against when you're done.- A selection of
**Interactive Java® Demonstrations**called*Mathlets*to illustrate key concepts. - A full set of
**Exams with Solutions**, including practice exams to help you prepare.

#### Content Development

Haynes Miller

Jeremy Orloff

Dr. John Lewis

Arthur Mattuck

## Other Versions

## Other OCW Versions

OCW has published multiple versions of this subject.

## Related Content

Topics covered in a first year course in differential equations. Need to understand basic differentiation and integration from Calculus playlist before starting here. What is a differential equation. Separable Differential Equations. Separable differential equations 2. Exact Equations Intuition 1 (proofy). Exact Equations Intuition 2 (proofy). Exact Equations Example 1. Exact Equations Example 2. Exact Equations Example 3. Integrating factors 1. Integrating factors 2. First order homegenous equations. First order homogeneous equations 2. 2nd Order Linear Homogeneous Differential Equations 1. 2nd Order Linear Homogeneous Differential Equations 2. 2nd Order Linear Homogeneous Differential Equations 3. 2nd Order Linear Homogeneous Differential Equations 4. Complex roots of the characteristic equations 1. Complex roots of the characteristic equations 2. Complex roots of the characteristic equations 3. Repeated roots of the characteristic equation. Repeated roots of the characteristic equations part 2. Undetermined Coefficients 1. Undetermined Coefficients 2. Undetermined Coefficients 3. Undetermined Coefficients 4. Laplace Transform 1. Laplace Transform 2. Laplace Transform 3 (L{sin(at)}). Laplace Transform 4. Laplace Transform 5. Laplace Transform 6. Laplace Transform to solve an equation. Laplace Transform solves an equation 2. More Laplace Transform tools. Using the Laplace Transform to solve a nonhomogeneous eq. Laplace Transform of : L{t}. Laplace Transform of t^n: L{t^n}. Laplace Transform of the Unit Step Function. Inverse Laplace Examples. Laplace/Step Function Differential Equation. Dirac Delta Function. Laplace Transform of the Dirac Delta Function. Introduction to the Convolution. The Convolution and the Laplace Transform. Using the Convolution Theorem to Solve an Initial Value Prob.

This course covers matrix theory and linear algebra, emphasizing topics useful in other disciplines such as physics, economics and social sciences, natural sciences, and engineering. It parallels the combination of theory and applications in Professor Strang’s textbook *Introduction to Linear Algebra*.

#### Course Format

This course has been designed for independent study. It provides everything you will need to understand the concepts covered in the course. The materials include:

- A complete set of
**Lecture Videos**by Professor Gilbert Strang. **Summary Notes**for all videos along with suggested readings in Prof. Strang's textbook*Linear Algebra*.**Problem Solving Videos**on every topic taught by an experienced MIT Recitation Instructor.**Problem Sets**to do on your own with**Solutions**to check your answers against when you're done.- A selection of
**Java® Demonstrations**to illustrate key concepts. - A full set of
**Exams with Solutions**, including review material to help you prepare.

## Other Versions

## Other OCW Versions

OCW has published multiple versions of this subject.

## Related Content

Matrices, vectors, vector spaces, transformations. Covers all topics in a first year college linear algebra course. This is an advanced course normally taken by science or engineering majors after taking at least two semesters of calculus (although calculus really isn't a prereq) so don't confuse this with regular high school algebra. Introduction to matrices. Matrix multiplication (part 1). Matrix multiplication (part 2). Idea Behind Inverting a 2x2 Matrix. Inverting matrices (part 2). Inverting Matrices (part 3). Matrices to solve a system of equations. Matrices to solve a vector combination problem. Singular Matrices. 3-variable linear equations (part 1). Solving 3 Equations with 3 Unknowns. Introduction to Vectors. Vector Examples. Parametric Representations of Lines. Linear Combinations and Span. Introduction to Linear Independence. More on linear independence. Span and Linear Independence Example. Linear Subspaces. Basis of a Subspace. Vector Dot Product and Vector Length. Proving Vector Dot Product Properties. Proof of the Cauchy-Schwarz Inequality. Vector Triangle Inequality. Defining the angle between vectors. Defining a plane in R3 with a point and normal vector. Cross Product Introduction. Proof: Relationship between cross product and sin of angle. Dot and Cross Product Comparison/Intuition. Matrices: Reduced Row Echelon Form 1. Matrices: Reduced Row Echelon Form 2. Matrices: Reduced Row Echelon Form 3. Matrix Vector Products. Introduction to the Null Space of a Matrix. Null Space 2: Calculating the null space of a matrix. Null Space 3: Relation to Linear Independence. Column Space of a Matrix. Null Space and Column Space Basis. Visualizing a Column Space as a Plane in R3. Proof: Any subspace basis has same number of elements. Dimension of the Null Space or Nullity. Dimension of the Column Space or Rank. Showing relation between basis cols and pivot cols. Showing that the candidate basis does span C(A). A more formal understanding of functions. Vector Transformations. Linear Transformations. Matrix Vector Products as Linear Transformations. Linear Transformations as Matrix Vector Products. Image of a subset under a transformation. im(T): Image of a Transformation. Preimage of a set. Preimage and Kernel Example. Sums and Scalar Multiples of Linear Transformations. More on Matrix Addition and Scalar Multiplication. Linear Transformation Examples: Scaling and Reflections. Linear Transformation Examples: Rotations in R2. Rotation in R3 around the X-axis. Unit Vectors. Introduction to Projections. Expressing a Projection on to a line as a Matrix Vector prod. Compositions of Linear Transformations 1. Compositions of Linear Transformations 2. Matrix Product Examples. Matrix Product Associativity. Distributive Property of Matrix Products. Introduction to the inverse of a function. Proof: Invertibility implies a unique solution to f(x)=y. Surjective (onto) and Injective (one-to-one) functions. Relating invertibility to being onto and one-to-one. Determining whether a transformation is onto. Exploring the solution set of Ax=b. Matrix condition for one-to-one trans. Simplifying conditions for invertibility. Showing that Inverses are Linear. Deriving a method for determining inverses. Example of Finding Matrix Inverse. Formula for 2x2 inverse. 3x3 Determinant. nxn Determinant. Determinants along other rows/cols. Rule of Sarrus of Determinants. Determinant when row multiplied by scalar. (correction) scalar multiplication of row. Determinant when row is added. Duplicate Row Determinant. Determinant after row operations. Upper Triangular Determinant. Simpler 4x4 determinant. Determinant and area of a parallelogram. Determinant as Scaling Factor. Transpose of a Matrix. Determinant of Transpose. Transpose of a Matrix Product. Transposes of sums and inverses. Transpose of a Vector. Rowspace and Left Nullspace. Visualizations of Left Nullspace and Rowspace. Orthogonal Complements. Rank(A) = Rank(transpose of A). dim(V) + dim(orthogonal complement of V)=n. Representing vectors in Rn using subspace members. Orthogonal Complement of the Orthogonal Complement. Orthogonal Complement of the Nullspace. Unique rowspace solution to Ax=b. Rowspace Solution to Ax=b example. Showing that A-transpose x A is invertible. Projections onto Subspaces. Visualizing a projection onto a plane. A Projection onto a Subspace is a Linear Transforma. Subspace Projection Matrix Example. Another Example of a Projection Matrix. Projection is closest vector in subspace. Least Squares Approximation. Least Squares Examples. Another Least Squares Example. Coordinates with Respect to a Basis. Change of Basis Matrix. Invertible Change of Basis Matrix. Transformation Matrix with Respect to a Basis. Alternate Basis Transformation Matrix Example. Alternate Basis Transformation Matrix Example Part 2. Changing coordinate systems to help find a transformation matrix. Introduction to Orthonormal Bases. Coordinates with respect to orthonormal bases. Projections onto subspaces with orthonormal bases. Finding projection onto subspace with orthonormal basis example. Example using orthogonal change-of-basis matrix to find transformation matrix. Orthogonal matrices preserve angles and lengths. The Gram-Schmidt Process. Gram-Schmidt Process Example. Gram-Schmidt example with 3 basis vectors. Introduction to Eigenvalues and Eigenvectors. Proof of formula for determining Eigenvalues. Example solving for the eigenvalues of a 2x2 matrix. Finding Eigenvectors and Eigenspaces example. Eigenvalues of a 3x3 matrix. Eigenvectors and Eigenspaces for a 3x3 matrix. Showing that an eigenbasis makes for good coordinate systems. Vector Triple Product Expansion (very optional). Normal vector from plane equation. Point distance to plane. Distance Between Planes.

In this course, you will study basic algebraic operations and concepts, as well as the structure and use of algebra. This includes solving algebraic equations, factoring algebraic expressions, working with rational expressions, and graphing linear equations. You will apply these skills to solve real-world problems (word problems). Each unit will have its own application problems, depending on the concepts you have been exposed to. This course is also intended to provide you with a strong foundation for intermediate algebra and beyond. It will begin with a review of some math concepts formed in pre-algebra, such as ordering operations and simplifying simple algebraic expressions, to get your feet wet. You will then build on these concepts by learning more about functions, graphing of functions, evaluation of functions, and factorization. You will spend time on the rules of exponents and their applications in distribution of multiplication over addition/subtraction. This course provides students the opportuni…

Precalculus I is designed to prepare you for Precalculus II, Calculus, Physics, and higher math and science courses. In this course, the main focus is on five types of functions: linear, polynomial, rational, exponential, and logarithmic. In accompaniment with these functions, you will learn how to solve equations and inequalities, graph, find domains and ranges, combine functions, and solve a multitude of real-world applications. In this course, you will not only be learning new algebraic techniques that are necessary for other math and science courses, but you will be learning to become a critical thinker. You will be able to determine what is the best approach to take such as numerical, graphical, or algebraic to solve a problem given particular information. Then you will investigate and solve the problem, interpret the answer, and determine if it is reasonable. A few examples of applications in this course are determining compound interest, growth of bacteria, decay of a radioactive substance, and the…

Precalculus II continues the in-depth study of functions addressed in Precalculus I by adding the trigonometric functions to your function toolkit. In this course, you will cover families of trigonometric functions, as well as their inverses, properties, graphs, and applications. Additionally, you will study trigonometric equations and identities, the laws of sines and cosines, polar coordinates and graphs, parametric equations and elementary vector operations. You might be curious how the study of trigonometry, or “trig,” as it is more often referred to, came about and why it is important to your studies still. Trigonometry, from the Greek for “triangle measure,” studies the relationships between the angles of a triangle and its sides and defines the trigonometric functions used to describe those relationships. Trigonometric functions are particularly useful when describing cyclical phenomena and have applications in numerous fields, including astronomy, navigation, music theory, physics, chemistry…

This course is a continuation of MA001: Beginning Algebra [1]. Algebra allows us to formulate real-world problems in an abstract mathematical term or equation. These equations can then be solved by using techniques you will learn in this course. For example, if I can ride my bicycle at 5 miles per hour and I live 12 miles from work, how long will it take me to get to work? Or, suppose I am a pitcher for the St. Louis Cardinals and my fast ball is 95 miles per hour, how much time does the hitter have to react to the baseball? And, can you explain why an object thrown up into the air will come back down? If so, can you tell how long it will take for the object to hit the ground? These are all examples of problems that can be stated as an algebraic equation and then solved. In this course you will study compound inequalities and solve systems of linear equations. You will then study radicals and rational exponents, followed by quadratic equations and techniques used to solve these equations. Finally, you will…