Courses tagged with "Nutrition" (212)

Sort by: Name, Rating, Price
Start time: Any, Upcoming, Recent started, New, Always Open
Price: Any, Free, Paid
Starts : 2004-09-01
15 votes
MIT OpenCourseWare (OCW) Free Physical Sciences Infor Information environments Information Theory Nutrition Vectors

Space System Architecture and Design incorporates lectures, readings and discussion on topics in the architecting of space systems. The class reviews existing space system architectures and the classical methods of designing them. Sessions focus on multi-attribute utility theory as a new design paradigm for space systems, when combined with integrated concurrent engineering and efficient searches of large architectural tradespaces. Designing for flexibility and uncertainty is considered, as are policy and product development issues.

Starts : 2002-02-01
10 votes
MIT OpenCourseWare (OCW) Free Physical Sciences Infor Information control Information Theory Nutrition Vectors

Space Systems Engineering (16.83X) is the astronautical capstone course option in the Department of Aeronautics and Astronautics.  Between Spring 2002 and Spring 2003, the course was offered in a 3-semester format, using a Conceive, Design, Implement and Operate (C-D-I-O) teaching model. 16.83X is shorthand for the three course numbers: 16.83, 16.831, and 16.832. The first semester (16.83) is the Conceive-Design phase of the project, which results in a detailed system design, but precedes assembly.  The second semester (16.831) is the Implement phase, and involves building the students' system.  The final semester (16.832) is the Operate phase, in which the system is tested and readied to perform in its intended environment.

This year's project objective was to demonstrate the feasibility of an electromagnetically controlled array of formation flying satellites.  The project, "EMFFORCE", was an extension of the first C-D-I-O course project, "SPHERES", which ran from Spring 1999 through Spring 2000, and demonstrated satellite formation flying using gas thrusters for station-keeping.  The whole class works on the same project, but divides into smaller subsystem teams, such as power, metrology, and structures, to handle design details.

Starts : 2007-02-01
8 votes
MIT OpenCourseWare (OCW) Free Physical Sciences Infor Information environments Information Theory Nutrition Vectors

In 16.89 / ESD.352 the students will first be asked to understand the key challenges in designing ground and space telescopes, the stakeholder structure and value flows, and the particular pros and cons of the proposed project. The first half of the class will concentrate on performing a thorough architectural analysis of the key astrophysical, engineering, human, budgetary and broader policy issues that are involved in this decision. This will require the students to carry out a qualitative and quantitative conceptual study during the first half of the semester and recommend a small set of promising architectures for further study at the Preliminary Design Review (PDR).

Both lunar surface telescopes as well as orbital locations should be considered.

The second half of the class will then pick 1-2 of the top-rated architectures for a lunar telescope facility and develop the concept in more detail and present the detailed design at the Critical Design Review (CDR). This should not only sketch out the science program, telescope architecture and design, but also the stakeholder relationships, a rough estimate of budget and timeline, and also clarify the role that human explorers could or should play during both deployment and servicing/operations of such a facility (if any).

Starts : 2007-02-01
9 votes
MIT OpenCourseWare (OCW) Free Physical Sciences Infor Information environments Information Theory Nutrition Vectors

In 16.89 / ESD.352 the students will first be asked to understand the key challenges in designing ground and space telescopes, the stakeholder structure and value flows, and the particular pros and cons of the proposed project. The first half of the class will concentrate on performing a thorough architectural analysis of the key astrophysical, engineering, human, budgetary and broader policy issues that are involved in this decision. This will require the students to carry out a qualitative and quantitative conceptual study during the first half of the semester and recommend a small set of promising architectures for further study at the Preliminary Design Review (PDR).

Both lunar surface telescopes as well as orbital locations should be considered.

The second half of the class will then pick 1-2 of the top-rated architectures for a lunar telescope facility and develop the concept in more detail and present the detailed design at the Critical Design Review (CDR). This should not only sketch out the science program, telescope architecture and design, but also the stakeholder relationships, a rough estimate of budget and timeline, and also clarify the role that human explorers could or should play during both deployment and servicing/operations of such a facility (if any).

Starts : 2004-09-01
11 votes
MIT OpenCourseWare (OCW) Free Physical Sciences Infor Information environments Information Theory Nutrition Vectors

The major themes of this course are estimation and control of dynamic systems. Preliminary topics begin with reviews of probability and random variables. Next, classical and state-space descriptions of random processes and their propagation through linear systems are introduced, followed by frequency domain design of filters and compensators. From there, the Kalman filter is employed to estimate the states of dynamic systems. Concluding topics include conditions for stability of the filter equations.

Starts : 2002-09-01
10 votes
MIT OpenCourseWare (OCW) Free Physical Sciences Infor Information control Information Theory Nutrition Vectors

Applies solid mechanics to analysis of high-technology structures. Structural design considerations. Review of three-dimensional elasticity theory; stress, strain, anisotropic materials, and heating effects. Two-dimensional plane stress and plane strain problems. Torsion theory for arbitrary sections. Bending of unsymmetrical section and mixed material beams. Bending, shear, and torsion of thin-wall shell beams. Buckling of columns and stability phenomena. Introduction to structural dynamics. Exercises in the design of general and aerospace structures.

Starts : 2016-02-01
14 votes
MIT OpenCourseWare (OCW) Free Physical Sciences Infor Information environments Information Theory Nutrition Vectors

This course covers important concepts and techniques in designing and operating safety-critical systems. Topics include the nature of risk, formal accident and human error models, causes of accidents, fundamental concepts of system safety engineering, system and software hazard analysis, designing for safety, fault tolerance, safety issues in the design of human-machine interaction, verification of safety, creating a safety culture, and management of safety-critical projects. Includes a class project involving the high-level system design and analysis of a safety-critical system.

Starts : 2005-02-01
7 votes
MIT OpenCourseWare (OCW) Free Physical Sciences Infor Information control Information Theory Nutrition Vectors

This course introduces analysis techniques for complex structures and the role of material properties in structural design, failure, and longevity. Students will learn about the energy principles in structural analysis and their applications to statically-indeterminate structures and solid continua. Additionally, the course will examine matrix and finite-element methods of structured analysis including bars, beams, and two-dimensional plane stress elements. Structural materials and their properties will be considered, as will metals and composites. Other topics include modes of structural failure, criteria for yielding and fracture, crack formation and fracture mechanics, and fatigue and design for longevity. Students are expected to apply these concepts to their own structural design projects.

Starts : 2004-02-01
13 votes
MIT OpenCourseWare (OCW) Free Physical Sciences Infor Information control Information Theory Nutrition Vectors

This course meets weekly to discuss recent aerospace history and current events, in order to understand how they are responsible for the state of the aerospace industry. With invited subject matter experts participating in nearly every session, students have an opportunity to hone their insight through truly informed discussion. The aim of the course is to prepare junior and senior level students for their first industry experiences.

Starts : 2009-09-01
15 votes
MIT OpenCourseWare (OCW) Free Physical Sciences Infor Information control Information Theory Nutrition Vectors

Numerous recent studies have shown that the U.S. has relatively low percentages of students who enter science and engineering and a high drop-out rate. Some other countries are producing many more scientists and engineers per capita than the U.S. What does this mean for the future of the U.S. and the global economy?

In this readings and discussion-based seminar you will meet weekly with the Dean of Undergraduate Education to explore the kind of education MIT and other institutions are and should be giving. Based on data from National Academy and other reports, along with what pundits have been saying, we'll see if we can decide how much the U.S. may or may not be at risk.

Starts : 2002-09-01
13 votes
MIT OpenCourseWare (OCW) Free Physical Sciences Infor Information control Information Theory Nutrition Vectors

This course is taught in four main parts. The first is a review of fundamental thermodynamic concepts (e.g. energy exchange in propulsion and power processes), and is followed by the second law (e.g. reversibility and irreversibility, lost work). Next are applications of thermodynamics to engineering systems (e.g. propulsion and power cycles, thermo chemistry), and the course concludes with fundamentals of heat transfer (e.g. heat exchange in aerospace devices).

Starts : 2005-09-01
17 votes
MIT OpenCourseWare (OCW) Free Physical Sciences Infor Information control Information Theory Nutrition Vectors

The basic objective of Unified Engineering is to give a solid understanding of the fundamental disciplines of aerospace engineering, as well as their interrelationships and applications. These disciplines are Materials and Structures (M); Computers and Programming (C); Fluid Mechanics (F); Thermodynamics (T); Propulsion (P); and Signals and Systems (S). In choosing to teach these subjects in a unified manner, the instructors seek to explain the common intellectual threads in these disciplines, as well as their combined application to solve engineering Systems Problems (SP). Throughout the year, the instructors emphasize the connections among the disciplines.

Starts : 2008-09-01
11 votes
MIT OpenCourseWare (OCW) Free Physical Sciences Infor Information control Information Theory JaverianaX Nutrition Reading assessment reading comprehension

This undergraduate class is designed to introduce students to the physics that govern the circulation of the ocean and atmosphere. The focus of the course is on the processes that control the climate of the planet.

Acknowledgments

Prof. Ferrari wishes to acknowledge that this course was originally designed and taught by Prof. John Marshall.

Starts : 2004-02-01
14 votes
MIT OpenCourseWare (OCW) Free Physical Sciences Infor Information control Information Theory JaverianaX Nutrition Reading assessment reading comprehension

In this course, we will look at many important aspects of the circulation of the atmosphere and ocean, from length scales of meters to thousands of km and time scales ranging from seconds to years. We will assume familiarity with concepts covered in course 12.003 (Physics of the Fluid Earth). In the early stages of the present course, we will make somewhat greater use of math than did 12.003, but the math we will use is no more than that encountered in elementary electromagnetic field theory, for example. The focus of the course is on the physics of the phenomena which we will discuss.

3 votes
Saylor.org Free Closed [?] Physical Sciences Calculus I Foreign Language Italian Language and Literature Lancaster University Mechanisms of organic chemical reactions Navigation+SAP

Physics 101 is the first course in the Introduction to Physics sequence. In general, the quest of physics is to develop descriptions of the natural world that correspond closely to actual observations. Given this definition, the story behind everything in the universe, from rocks falling to stars shining, is one of physics. In principle, the events of the natural world represent no more than the interactions of the elementary particles that comprise the material universe. In practice, however, it turns out to be more complicated than that. As the system under study becomes more and more complex, it becomes less and less clear how the basic laws of physics account for the observations. Other branches of science, such as chemistry or biology, are needed.  In principle, biology is based on the laws of chemistry, and chemistry is based on the laws of physics, but our ability to understand something as complex as life in terms of the laws of physics is well beyond our present knowledge. Physics is, however, the…

3 votes
Saylor.org Free Closed [?] Physical Sciences Accessible Websites Calculus I Design.htm%25252525253Fdatetype%25252525253Dupcoming&.htm%252525253Fcategoryid%252525253D10.htm%2525 Nutrition Taking derivatives Undergraduate.htm%2525252525253Fstart%2525252525253D1400&limit%2525252525253D20.htm%25252525253Fsort

The physics of the universe appears to be dominated by the effects of four fundamental forces: gravity, electromagnetism, weak nuclear forces, and strong nuclear forces.  These forces control how matter, energy, space, and time interact to produce our physical world.  All other forces, such as the force you exert in standing up, are ultimately derived from these fundamental forces. We have direct daily experience with two of these forces: gravity and electromagnetism.  Consider, for example, the everyday sight of a person sitting on a chair.  The force holding the person on the chair is gravitational, and that gravitational force balances with material forces that “push up” to keep the individual in place.  These forces are the direct result of electromagnetic forces on the nanoscale.  On a larger stage, gravity holds the celestial bodies in their orbits, while we see the universe by the electromagnetic radiation (light, for example) with which it is filled.  The electromagnetic force also makes…

4 votes
Saylor.org Free Closed [?] Physical Sciences Hormonal activity Nutrition Taking derivatives University of Leicester

In ASTR101, you will be introduced to our current understanding of the universe and how we have come to this understanding.  We will start with the ancient Greeks and their belief that the universe was an orderly place capable of being understood.  We will continue through history, as we acquired more information on the nature of the universe and our models of the universe changed to reflect this.  This will take us through several different worldviews. As noted above, we will begin with the Greek worldview, which was characterized by the belief that the earth was the immovable center of the universe; this was known as the “geocentric” model.  Although this worldview is wrong in many of its details, it was a very important first step.  It explained the universe well enough that it lasted almost two thousand years.  By 1600, this belief was beginning to be challenged by such people as Copernicus, Kepler, and Galileo; finally, it was completely done away with by the physics of Newton.  By 1700, the…

4 votes
Saylor.org Free Closed [?] Physical Sciences International development Nutrition Taking derivatives

This course is designed to introduce you to the study of Calculus.  You will learn concrete applications of how calculus is used and, more importantly, why it works.  Calculus is not a new discipline; it has been around since the days of Archimedes.  However, Isaac Newton and Gottfried Leibniz, two 17th-century European mathematicians concurrently working on the same intellectual discovery hundreds of miles apart, were responsible for developing the field as we know it today.  This brings us to our first question, what is today's Calculus?  In its simplest terms, calculus is the study of functions, rates of change, and continuity.  While you may have cultivated a basic understanding of functions in previous math courses, in this course you will come to a more advanced understanding of their complexity, learning to take a closer look at their behaviors and nuances. In this course, we will address three major topics: limits, derivatives, and integrals, as well as study their respective foundations and a…

4 votes
Saylor.org Free Closed [?] Mathematics Biology%252525252B&%252525252BLife%252525252BSciences.htm%252525253Fcategoryid%252525253D4.htm%25252 Customer Service Certification Program Department of Economics International development Navigation+SAP Nutrition

This course is the second installment of Single-Variable Calculus.  In Part I (MA101 [1]), we studied limits, derivatives, and basic integrals as a means to understand the behavior of functions.  While this end goal remains the same, we will now focus on adapting what we have learned to applications.  By the end of this course, you should have a solid understanding of functions and how they behave.  You should also be able to apply the concepts we have learned in both Parts I and II of Single-Variable Calculus to a variety of situations. We will begin by revisiting and building upon what we know about the integral.  We will then explore the mathematical applications of integration before delving into the second major topic of this course: series.  The course will conclude with an introduction to differential equations. [1] http:///courses/ma101/…

7 votes
Saylor.org Free Closed [?] Physical Sciences International development Nutrition Taking derivatives

Differential equations are, in addition to a topic of study in mathematics, the main language in which the laws and phenomena of science are expressed.  In its most basic sense, a differential equation is an expression that describes how a system changes from one moment of time to another, or from one point in space to another.  When working with differential equations, the ultimate goal is to move from a microscopic view of relevant physics to a macroscopic view of the behavior of a system as a whole. Let’s look at a simple differential equation.  From previous math and physics courses, we know that a car that is constantly accelerating in the x-direction, for example, obeys the equation d2x/dt2 = a, where a is the applied acceleration.  This equation has two derivations with respect to time, so it is a second-order differential equation; because it has derivations with respect to only one variable (in this example, time), it is known as an  ordinary differential equation, or an ODE. Let’s say t…

Trusted paper writing service WriteMyPaper.Today will write the papers of any difficulty.