Courses tagged with "Vectors" (52)

Sort by: Name, Rating, Price
Start time: Any, Upcoming, Recent started, New, Always Open
Price: Any, Free, Paid
Starts : 2002-02-01
10 votes
MIT OpenCourseWare (OCW) Free Physical Sciences Infor Information control Information Theory Nutrition Vectors

Space Systems Engineering (16.83X) is the astronautical capstone course option in the Department of Aeronautics and Astronautics.  Between Spring 2002 and Spring 2003, the course was offered in a 3-semester format, using a Conceive, Design, Implement and Operate (C-D-I-O) teaching model. 16.83X is shorthand for the three course numbers: 16.83, 16.831, and 16.832. The first semester (16.83) is the Conceive-Design phase of the project, which results in a detailed system design, but precedes assembly.  The second semester (16.831) is the Implement phase, and involves building the students' system.  The final semester (16.832) is the Operate phase, in which the system is tested and readied to perform in its intended environment.

This year's project objective was to demonstrate the feasibility of an electromagnetically controlled array of formation flying satellites.  The project, "EMFFORCE", was an extension of the first C-D-I-O course project, "SPHERES", which ran from Spring 1999 through Spring 2000, and demonstrated satellite formation flying using gas thrusters for station-keeping.  The whole class works on the same project, but divides into smaller subsystem teams, such as power, metrology, and structures, to handle design details.

Starts : 2007-02-01
8 votes
MIT OpenCourseWare (OCW) Free Physical Sciences Infor Information environments Information Theory Nutrition Vectors

In 16.89 / ESD.352 the students will first be asked to understand the key challenges in designing ground and space telescopes, the stakeholder structure and value flows, and the particular pros and cons of the proposed project. The first half of the class will concentrate on performing a thorough architectural analysis of the key astrophysical, engineering, human, budgetary and broader policy issues that are involved in this decision. This will require the students to carry out a qualitative and quantitative conceptual study during the first half of the semester and recommend a small set of promising architectures for further study at the Preliminary Design Review (PDR).

Both lunar surface telescopes as well as orbital locations should be considered.

The second half of the class will then pick 1-2 of the top-rated architectures for a lunar telescope facility and develop the concept in more detail and present the detailed design at the Critical Design Review (CDR). This should not only sketch out the science program, telescope architecture and design, but also the stakeholder relationships, a rough estimate of budget and timeline, and also clarify the role that human explorers could or should play during both deployment and servicing/operations of such a facility (if any).

Starts : 2007-02-01
9 votes
MIT OpenCourseWare (OCW) Free Physical Sciences Infor Information environments Information Theory Nutrition Vectors

In 16.89 / ESD.352 the students will first be asked to understand the key challenges in designing ground and space telescopes, the stakeholder structure and value flows, and the particular pros and cons of the proposed project. The first half of the class will concentrate on performing a thorough architectural analysis of the key astrophysical, engineering, human, budgetary and broader policy issues that are involved in this decision. This will require the students to carry out a qualitative and quantitative conceptual study during the first half of the semester and recommend a small set of promising architectures for further study at the Preliminary Design Review (PDR).

Both lunar surface telescopes as well as orbital locations should be considered.

The second half of the class will then pick 1-2 of the top-rated architectures for a lunar telescope facility and develop the concept in more detail and present the detailed design at the Critical Design Review (CDR). This should not only sketch out the science program, telescope architecture and design, but also the stakeholder relationships, a rough estimate of budget and timeline, and also clarify the role that human explorers could or should play during both deployment and servicing/operations of such a facility (if any).

Starts : 2004-09-01
11 votes
MIT OpenCourseWare (OCW) Free Physical Sciences Infor Information environments Information Theory Nutrition Vectors

The major themes of this course are estimation and control of dynamic systems. Preliminary topics begin with reviews of probability and random variables. Next, classical and state-space descriptions of random processes and their propagation through linear systems are introduced, followed by frequency domain design of filters and compensators. From there, the Kalman filter is employed to estimate the states of dynamic systems. Concluding topics include conditions for stability of the filter equations.

Starts : 2002-09-01
10 votes
MIT OpenCourseWare (OCW) Free Physical Sciences Infor Information control Information Theory Nutrition Vectors

Applies solid mechanics to analysis of high-technology structures. Structural design considerations. Review of three-dimensional elasticity theory; stress, strain, anisotropic materials, and heating effects. Two-dimensional plane stress and plane strain problems. Torsion theory for arbitrary sections. Bending of unsymmetrical section and mixed material beams. Bending, shear, and torsion of thin-wall shell beams. Buckling of columns and stability phenomena. Introduction to structural dynamics. Exercises in the design of general and aerospace structures.

Starts : 2016-02-01
14 votes
MIT OpenCourseWare (OCW) Free Physical Sciences Infor Information environments Information Theory Nutrition Vectors

This course covers important concepts and techniques in designing and operating safety-critical systems. Topics include the nature of risk, formal accident and human error models, causes of accidents, fundamental concepts of system safety engineering, system and software hazard analysis, designing for safety, fault tolerance, safety issues in the design of human-machine interaction, verification of safety, creating a safety culture, and management of safety-critical projects. Includes a class project involving the high-level system design and analysis of a safety-critical system.

Starts : 2005-02-01
7 votes
MIT OpenCourseWare (OCW) Free Physical Sciences Infor Information control Information Theory Nutrition Vectors

This course introduces analysis techniques for complex structures and the role of material properties in structural design, failure, and longevity. Students will learn about the energy principles in structural analysis and their applications to statically-indeterminate structures and solid continua. Additionally, the course will examine matrix and finite-element methods of structured analysis including bars, beams, and two-dimensional plane stress elements. Structural materials and their properties will be considered, as will metals and composites. Other topics include modes of structural failure, criteria for yielding and fracture, crack formation and fracture mechanics, and fatigue and design for longevity. Students are expected to apply these concepts to their own structural design projects.

Starts : 2011-02-01
18 votes
MIT OpenCourseWare (OCW) Free Physical Sciences Infor Information control Information Theory Nutrition Vectors

This course provides an introduction to the transportation industry's major technical challenges and considerations. For upper level undergraduates interested in learning about the transportation field in a broad but quantitative manner. Topics include road vehicle engineering, internal combustion engines, batteries and motors, electric and hybrid powertrains, urban and high speed rail transportation, water vessels, aircraft types and aerodynamics, radar, navigation, GPS, GIS. Students will complete a project on a subject of their choosing.

Starts : 2004-02-01
13 votes
MIT OpenCourseWare (OCW) Free Physical Sciences Infor Information control Information Theory Nutrition Vectors

This course meets weekly to discuss recent aerospace history and current events, in order to understand how they are responsible for the state of the aerospace industry. With invited subject matter experts participating in nearly every session, students have an opportunity to hone their insight through truly informed discussion. The aim of the course is to prepare junior and senior level students for their first industry experiences.

Starts : 2009-09-01
15 votes
MIT OpenCourseWare (OCW) Free Physical Sciences Infor Information control Information Theory Nutrition Vectors

Numerous recent studies have shown that the U.S. has relatively low percentages of students who enter science and engineering and a high drop-out rate. Some other countries are producing many more scientists and engineers per capita than the U.S. What does this mean for the future of the U.S. and the global economy?

In this readings and discussion-based seminar you will meet weekly with the Dean of Undergraduate Education to explore the kind of education MIT and other institutions are and should be giving. Based on data from National Academy and other reports, along with what pundits have been saying, we'll see if we can decide how much the U.S. may or may not be at risk.

Starts : 2002-09-01
13 votes
MIT OpenCourseWare (OCW) Free Physical Sciences Infor Information control Information Theory Nutrition Vectors

This course is taught in four main parts. The first is a review of fundamental thermodynamic concepts (e.g. energy exchange in propulsion and power processes), and is followed by the second law (e.g. reversibility and irreversibility, lost work). Next are applications of thermodynamics to engineering systems (e.g. propulsion and power cycles, thermo chemistry), and the course concludes with fundamentals of heat transfer (e.g. heat exchange in aerospace devices).

Starts : 2005-09-01
17 votes
MIT OpenCourseWare (OCW) Free Physical Sciences Infor Information control Information Theory Nutrition Vectors

The basic objective of Unified Engineering is to give a solid understanding of the fundamental disciplines of aerospace engineering, as well as their interrelationships and applications. These disciplines are Materials and Structures (M); Computers and Programming (C); Fluid Mechanics (F); Thermodynamics (T); Propulsion (P); and Signals and Systems (S). In choosing to teach these subjects in a unified manner, the instructors seek to explain the common intellectual threads in these disciplines, as well as their combined application to solve engineering Systems Problems (SP). Throughout the year, the instructors emphasize the connections among the disciplines.

Trusted paper writing service WriteMyPaper.Today will write the papers of any difficulty.