Courses tagged with "International development" (78)

Sort by: Name, Rating, Price
Start time: Any, Upcoming, Recent started, New, Always Open
Price: Any, Free, Paid
Starts : 2007-09-01
13 votes
MIT OpenCourseWare (OCW) Free Engineering Infor Information control Information Theory International development Nutrition

This class is an introduction to the dynamics and vibrations of lumped-parameter models of mechanical systems. Topics include kinematics; force-momentum formulation for systems of particles and rigid bodies in planar motion; work-energy concepts; virtual displacements and virtual work; Lagrange's equations for systems of particles and rigid bodies in planar motion; linearization of equations of motion; linear stability analysis of mechanical systems; free and forced vibration of linear multi-degree of freedom models of mechanical systems; and matrix eigenvalue problems. The class includes an introduction to numerical methods and using MATLAB® to solve dynamics and vibrations problems.

This version of the class stresses kinematics and builds around a strict but powerful approach to kinematic formulation which is different from the approach presented in Spring 2007. Our notation was adapted from that of Professor Kane of Stanford University.

Starts : 2008-02-01
10 votes
MIT OpenCourseWare (OCW) Free Engineering Infor Information control Information Theory International development Nutrition

Upon successful completion of this course, students will be able to:

  • Create lumped parameter models (expressed as ODEs) of simple dynamic systems in the electrical and mechanical energy domains
  • Make quantitative estimates of model parameters from experimental measurements
  • Obtain the time-domain response of linear systems to initial conditions and/or common forcing functions (specifically; impulse, step and ramp input) by both analytical and computational methods
  • Obtain the frequency-domain response of linear systems to sinusoidal inputs
  • Compensate the transient response of dynamic systems using feedback techniques
  • Design, implement and test an active control system to achieve a desired performance measure

Mastery of these topics will be assessed via homework, quizzes/exams, and lab assignments.

Starts : 2006-09-01
14 votes
MIT OpenCourseWare (OCW) Free Engineering Infor Information environments Information Theory International development Nutrition

This half-semester course studies the economics of the principal markets related to marine transportation, environment, and natural resources. Topics include structures of the markets and industries involved; competition; impacts of policies and regulations. The course analyzes the relationship among industries, markets, technologies, and national policies, and introduces the concepts of national income accounts, sustainability, and intergenerational equity and their relationship to current economic practice.

Starts : 2009-02-01
18 votes
MIT OpenCourseWare (OCW) Free Engineering Infor Information control Information Theory International development Nutrition

This is an advanced course on modeling, design, integration and best practices for use of machine elements such as bearings, springs, gears, cams and mechanisms. Modeling and analysis of these elements is based upon extensive application of physics, mathematics and core mechanical engineering principles (solid mechanics, fluid mechanics, manufacturing, estimation, computer simulation, etc.). These principles are reinforced via (1) hands-on laboratory experiences wherein students conduct experiments and disassemble machines and (2) a substantial design project wherein students model, design, fabricate and characterize a mechanical system that is relevant to a real world application. Students master the materials via problems sets that are directly related to, and coordinated with, the deliverables of their project. Student assessment is based upon mastery of the course materials and the student's ability to synthesize, model and fabricate a mechanical device subject to engineering constraints (e.g. cost and time/schedule).

Starts : 2009-02-01
12 votes
MIT OpenCourseWare (OCW) Free Engineering Infor Information control Information Theory International development Nutrition

Student teams formulate and complete space/earth/ocean exploration-based design projects with weekly milestones. This course introduces core engineering themes, principles, and modes of thinking, and includes exercises in written and oral communication and team building. Specialized learning modules enable teams to focus on the knowledge required to complete their projects, such as machine elements, electronics, design process, visualization and communication. Examples of projects include surveying a lake for millfoil from a remote controlled aircraft, then sending out robotic harvesters to clear the invasive growth; and exploration to search for the evidence of life on a moon of Jupiter, with scientists participating through teleoperation and supervisory control of robots.

Starts : 2009-09-01
19 votes
MIT OpenCourseWare (OCW) Free Engineering Infor Information control Information Theory International development Nutrition

This course introduces finite element methods for the analysis of solid, structural, fluid, field, and heat transfer problems. Steady-state, transient, and dynamic conditions are considered. Finite element methods and solution procedures for linear and nonlinear analyses are presented using largely physical arguments. The homework and a term project (for graduate students) involve use of the general purpose finite element analysis program ADINA. Applications include finite element analyses, modeling of problems, and interpretation of numerical results.

Starts : 2011-02-01
10 votes
MIT OpenCourseWare (OCW) Free Engineering Infor Information environments Information Theory International development Nutrition

This course presents finite element theory and methods for general linear and nonlinear analyses. Reliable and effective finite element procedures are discussed with their applications to the solution of general problems in solid, structural, and fluid mechanics, heat and mass transfer, and fluid-structure interactions. The governing continuum mechanics equations, conservation laws, virtual work, and variational principles are used to establish effective finite element discretizations and the stability, accuracy, and convergence are discussed. The homework and the student-selected term project using the general-purpose finite element analysis program ADINA are important parts of the course.

Starts : 2004-02-01
14 votes
MIT OpenCourseWare (OCW) Free Engineering Infor Information control Information Theory International development Nutrition

This course covers fundamentals of thermodynamics, chemistry, flow and transport processes as applied to energy systems. Topics include analysis of energy conversion in thermomechanical, thermochemical, electrochemical, and photoelectric processes in existing and future power and transportation systems, with emphasis on efficiency, environmental impact and performance. Systems utilizing fossil fuels, hydrogen, nuclear and renewable resources, over a range of sizes and scales are discussed. Applications include fuel reforming, hydrogen and synthetic fuel production, fuel cells and batteries, combustion, hybrids, catalysis, supercritical and combined cycles, photovoltaics, etc. The course also deals with different forms of energy storage and transmission, and optimal source utilization and fuel-life cycle analysis.

Starts : 2004-02-01
14 votes
MIT OpenCourseWare (OCW) Free Closed [?] Engineering Infor Information control Information Theory International development Nutrition

This course covers fundamentals of thermodynamics, chemistry, flow and transport processes as applied to energy systems. Topics include analysis of energy conversion in thermomechanical, thermochemical, electrochemical, and photoelectric processes in existing and future power and transportation systems, with emphasis on efficiency, environmental impact and performance. Systems utilizing fossil fuels, hydrogen, nuclear and renewable resources, over a range of sizes and scales are discussed. Applications include fuel reforming, hydrogen and synthetic fuel production, fuel cells and batteries, combustion, hybrids, catalysis, supercritical and combined cycles, photovoltaics, etc. The course also deals with different forms of energy storage and transmission, and optimal source utilization and fuel-life cycle analysis.

Starts : 2013-09-01
18 votes
MIT OpenCourseWare (OCW) Free Engineering Infor Information control Information Theory International development Nutrition

Fundamentals of photoelectric conversion: charge excitation, conduction, separation, and collection. Lectures cover commercial and emerging photovoltaic technologies and cross-cutting themes, including conversion efficiencies, loss mechanisms, characterization, manufacturing, systems, reliability, life-cycle analysis, risk analysis, and technology evolution in the context of markets, policies, society, and environment.

This course is one of many OCW Energy Courses, and it is an elective subject in MIT's undergraduate Energy Studies Minor. This Institute–wide program complements the deep expertise obtained in any major with a broad understanding of the interlinked realms of science, technology, and social sciences as they relate to energy and associated environmental challenges.

Starts : 2002-02-01
12 votes
MIT OpenCourseWare (OCW) Free Engineering Infor Information control Information Theory International development Nutrition

Subject studies how and why machines work, how they are conceived, how they are developed (drawn), and how they are utilized. Students learn from the hands-on experiences of taking things apart mentally and physically, drawing (sketching, 3D CAD) what they envision and observe, taking occasional field trips, and completing an individual term project (concept, creation, and presentation). Emphasis on understanding the physics and history of machines.

Starts : 2005-09-01
11 votes
MIT OpenCourseWare (OCW) Free Engineering Infor Information control Information Theory International development Nutrition

This course covers the development of the fundamental equations of fluid mechanics and their simplifications for several areas of marine hydrodynamics and the application of these principles to the solution of engineering problems. Topics include the principles of conservation of mass, momentum and energy, lift and drag forces, laminar and turbulent flows, dimensional analysis, added mass, and linear surface waves, including wave velocities, propagation phenomena, and descriptions of real sea waves. Wave forces on structures are treated in the context of design and basic seakeeping analysis of ships and offshore platforms. Geophysical fluid dynamics will also be addressed including distributions of salinity, temperature, and density; heat balance in the ocean; major ocean circulations and geostrophic flows; and the influence of wind stress. Experimental projects conducted in ocean engineering laboratories illustrating concepts taught in class, including ship resistance and model testing, lift and drag forces on submerged bodies, and vehicle propulsion.

Starts : 2007-02-01
4 votes
MIT OpenCourseWare (OCW) Free Engineering Infor Information environments Information Theory International development Nutrition

This course develops the theory and design of hydrofoil sections, including lifting and thickness problems for sub-cavitating sections, unsteady flow problems, and computer-aided design of low drag cavitation-free sections. It also covers lifting line and lifting surface theory with applications to hydrofoil craft, rudder, control surface, propeller and wind turbine rotor design. Other topics include computer-aided design of wake adapted propellers; steady and unsteady propeller thrust and torque; performance analysis and design of wind turbine rotors in steady and stochastic wind; and numerical principles of vortex lattice and lifting surface panel methods. Projects illustrate the development of computational methods for lifting, propeller and wind turbine flows, and use of state-of-the-art simulation methods for lifting, propulsion and wind turbine applications.

Starts : 2006-02-01
6 votes
MIT OpenCourseWare (OCW) Free Engineering Infor Information environments Information Theory International development Nutrition

This course provides a broad theoretical basis for system identification, estimation, and learning. Students will study least squares estimation and its convergence properties, Kalman filters, noise dynamics and system representation, function approximation theory, neural nets, radial basis functions, wavelets, Volterra expansions, informative data sets, persistent excitation, asymptotic variance, central limit theorems, model structure selection, system order estimate, maximum likelihood, unbiased estimates, Cramer-Rao lower bound, Kullback-Leibler information distance, Akaike's information criterion, experiment design, and model validation.

Starts : 2008-09-01
13 votes
MIT OpenCourseWare (OCW) Free Engineering Infor Information control Information Theory International development Nutrition

2.51 is a 12-unit subject, serving as the Mechanical Engineering Department's advanced undergraduate course in heat and mass transfer. The prerequisites for this course are the undergraduate courses in thermodynamics and fluid mechanics, specifically Thermal Fluids Engineering I and Thermal Fluids Engineering II or their equivalents. This course covers problems of heat and mass transfer in greater depth and complexity than is done in those courses and incorporates many subjects that are not included or are treated lightly in those courses; analysis is given greater emphasis than the use of correlations. Course 2.51 is directed at undergraduates having a strong interest in thermal science and graduate students who have not previously studied heat transfer.

Starts : 2008-02-01
13 votes
MIT OpenCourseWare (OCW) Free Engineering Infor Information environments Information Theory International development Nutrition

This course studies the fundamentals of how the design and operation of internal combustion engines affect their performance, operation, fuel requirements, and environmental impact. Topics include fluid flow, thermodynamics, combustion, heat transfer and friction phenomena, and fuel properties, with reference to engine power, efficiency, and emissions. Students examine the design features and operating characteristics of different types of internal combustion engines: spark-ignition, diesel, stratified-charge, and mixed-cycle engines. Class includes lab project in the Engine Laboratory.

Starts : 2016-09-01
7 votes
MIT OpenCourseWare (OCW) Free Closed [?] Engineering Infor Information environments Information Theory International development Nutrition

This course provides ways to analyze manufacturing systems in terms of material flow and storage, information flow, capacities, and times and durations of events. Fundamental topics include probability, inventory and queuing models, optimization, and linear and dynamic systems. Factory planning and scheduling topics include flow planning, bottleneck characterization, buffer and batch-size analysis, and dynamic behavior of production systems.

Starts : 2005-02-01
12 votes
MIT OpenCourseWare (OCW) Free Computer Sciences Infor Information control Information Theory International development Nutrition

This course is offered to undergraduates and introduces students to the formulation, methodology, and techniques for numerical solution of engineering problems. Topics covered include: fundamental principles of digital computing and the implications for algorithm accuracy and stability, error propagation and stability, the solution of systems of linear equations, including direct and iterative techniques, roots of equations and systems of equations, numerical interpolation, differentiation and integration, fundamentals of finite-difference solutions to ordinary differential equations, and error and convergence analysis. The subject is taught the first half of the term.

This subject was originally offered in Course 13 (Department of Ocean Engineering) as 13.002J. In 2005, ocean engineering became part of Course 2 (Department of Mechanical Engineering), and this subject was renumbered 2.993J.

Starts : 2006-02-01
6 votes
MIT OpenCourseWare (OCW) Free Engineering Infor Information control Information Theory International development Nutrition

This course is an introduction to the fundamental aspects of science and engineering necessary for exploring, observing, and utilizing the oceans. Hands-on projects focus on instrumentation in the marine environment and the design of ocean observatories for ocean monitoring and exploration. Topics include acoustics, sound speed and refraction, sounds generated by ships and marine animals, sonar systems and their principles of operation, hydrostatic behavior of floating and submerged bodies geared towards ocean vehicle design, stability of ocean vessels, and the application of instrumentation and electronics in the marine environment. Students work with sensor systems and deploy them in the field to gather and analyze real world data.

Starts : 2005-09-01
12 votes
MIT OpenCourseWare (OCW) Free Engineering Infor Information control Information Theory International development Nutrition

This course provides an overview of robot mechanisms, dynamics, and intelligent controls. Topics include planar and spatial kinematics, and motion planning; mechanism design for manipulators and mobile robots, multi-rigid-body dynamics, 3D graphic simulation; control design, actuators, and sensors; wireless networking, task modeling, human-machine interface, and embedded software. Weekly laboratories provide experience with servo drives, real-time control, and embedded software. Students will design and fabricate working robotic systems in a group-based term project.

Trusted paper writing service WriteMyPaper.Today will write the papers of any difficulty.