Courses tagged with "Nutrition" (228)

Sort by: Name, Rating, Price
Start time: Any, Upcoming, Recent started, New, Always Open
Price: Any, Free, Paid
Starts : 2016-02-26
No votes
edX Free Closed [?] Engineering English Business Cells How to Succeed Information policy Nutrition

Ce cours définit les notions de base des circuits électriques composés des trois éléments passifs (résistance, inductance et condensateur), linéaires et des sources de tension et de courant.

On traite ces circuits avec les lois élémentaires de l'électricité puis on développe une série de méthodes de combinaisons des éléments et de transformations du circuit qui mènent à leur simplification et permettent une analyse aisée des courants, tensions et puissances présents. Quelques circuits particuliers classiques sont présentés. 

Toutes ces méthodes sont premièrement développées en régime continu puis elles sont généralisées au régime alternatif, faisant intervenir le calcul complexe. L'importance du régime alternatif réside dans le fait qu'il est omniprésent au niveau de la distribution électrique domestique et industrielle.

This course is presented in French.

Starts : 2015-03-16
No votes
Coursera Free Closed [?] Engineering Arabic BabsonX Brain stem Diencephalon How to Succeed Nutrition

هو مساق للمهتمين في التعرف على أدوات الاستشعار الحديثة التي تستعين بتقانة النانو (وهي التقانة التي تبحث في المجال بين واحد إلى مئة نانوميتر، أي في أجزاء من المليار من المتر) لفرز ومراقبة الأحداث المختلفة في حياتنا الشخصية أو العملية. في أطار المساق، سنكتشف معا عالم النانو المذهل الذي يتعامل مع الوحدات الأساسية في بناء المادة. وبهذا سوف نمهد الطريق لتطبيقات إبداعية لانهائية تطبق في كل جزء من حياتنا اليومية، بدءا من تشخيصات وعلاجات (في الجسم الحي أو خارجه) للأمراض، وثم نستمر في تقانة مراقبة جودة المنتوجات وما يختص بالبيئة، وننهي في تقانة مراقبة القضايا الأمنية. سنتعلم في هذا السعي كيف نصَنع هذه الأدوات الجديدة، وكيف نميزها، وكيف نتحكم بها، وكيف ندمجها في التطبيقات المختلفة.

No votes
Canvas.net Free Closed [?] Engineering HumanitiesandScience Nutrition

Concepts in Nanotechnology is a six-week introduction to nanotechnology. The course is designed at a pre-college level, with no college level chemistry, math, or physics experience required. You will learn what nanotechnology is and what it means for something to be a nanomaterial. You will also learn about the applications and commercial products that use nanotechnology. This is an exciting opportunity to delve into the nano-world. Prerequisites: The course is taught entirely in English and aimed at a U.S. high school level. You need to be familiar with the basic concepts of chemistry, such as the theory of atoms and the periodic table of elements. Basic algebra skills, such as how to deal with equations containing variables, fractions, and exponents is necessary. No prerequisite knowledge in nanotechnology, materials science, or physics is required.

Starts : 2005-09-01
No votes
MIT OpenCourseWare (OCW) Free Closed [?] Engineering Infor Information environments Information Theory Nutrition Vectors

16.885J offers a holistic view of the aircraft as a system, covering: basic systems engineering; cost and weight estimation; basic aircraft performance; safety and reliability; lifecycle topics; aircraft subsystems; risk analysis and management; and system realization. Small student teams retrospectively analyze an existing aircraft covering: key design drivers and decisions; aircraft attributes and subsystems; and operational experience. Oral and written versions of the case study are delivered. For the Fall 2005 term, the class focuses on a systems engineering analysis of the Space Shuttle. It offers study of both design and operations of the shuttle, with frequent lectures by outside experts. Students choose specific shuttle systems for detailed analysis and develop new subsystem designs using state of the art technology.

Starts : 2012-09-01
No votes
MIT OpenCourseWare (OCW) Free Engineering Infor Information control Information technology Information Theory Nutrition

This is the second undergraduate architecture design studio, which introduces design logic and skills that enable design thinking, representation, and development. Through the lens of nano-scale machines, technologies, and phenomena, students are asked to explore techniques for describing form, space, and architecture. Exercises encourage various connotations of the "machine" and challenge students to translate conceptual strategies into more integrated design propositions through both digital and analog means.

Starts : 2012-09-01
No votes
MIT OpenCourseWare (OCW) Free Closed [?] Social Sciences Infor Information environments Information Theory Java Nutrition

This course will explore the mutual influences of ideas of nature, theories of city design and planning, and practices of urban design, construction, and management. We will investigate how natural processes shape urban landscapes (from the scale of street corner to region) and how to intervene strategically in those processes in order to achieve certain goals. We will examine cases of cities that adapted successfully to natural processes and those that did not. Students will then have the opportunity to research a case of their choice and to present their findings for discussion. The subject may be historical or an an example of contemporary theory and practice. Additional information is also available at Professor Spirn's class website.

Starts : 2014-11-18
No votes
edX Free Closed [?] Engineering English Business Demand+and+market+equilibrium How to Succeed Nutrition

*Note - This is an Archived course*

This is a past/archived course. At this time, you can only explore this course in a self-paced fashion. Certain features of this course may not be active, but many people enjoy watching the videos and working with the materials. Make sure to check for reruns of this course.


Composites are used in many industries today to enable high-performance products at economic advantage. These industries range from space to sports and include manufactured products for aircraft, transportation, energy, construction, sports, marine, and medical use. There are many material, economic and aesthetic advantages to using composites, but a solid knowledge of the physical properties, including the mechanics, tooling, design, inspection & repair, and manufacturing options is required for working in this medium as they are intrinsically linked.

This course provides an introduction to the fundamentals of composite materials for high performance structures from the point of view of Aerospace engineering design, manufacturing, and repair. It is designed to address critical areas of composite technologies that focus on materials, manufacturing, mechanics, design, inspection, and repair.  In this course students will learn how composite materials achieve properties of strength, weight ratios and durability that surpass aluminum in aircraft design.  For these high performance applications engineers typically rely on laminated structures, which are built up from many varying layers of ply-materials. Using this process the mechanical properties of the composite part can be tailored to specific applications resulting in significant weight and cost savings. Tailoring specific properties and designing innovative laminate structures highlights the multidisciplinary nature of this industry and how it touches the expertise of many disciplines including engineers, mechanics, and inspection specialists.

After successfully completing this course, students will be able to identify the unique characteristics of composites and understand how advanced composite structures are designed, manufactured and maintained.

 

Who Can Take This Course?

Unfortunately, learners from Iran, Sudan, Cuba and the Crimea region of Ukraine will not be able to register for this course at the present time. While edX has received a license from the U.S. Office of Foreign Assets Control (OFAC) to offer courses to learners from Iran, Sudan and Cuba, our license does not cover this course. Separately, EdX has applied for a license to offer courses to learners in the Crimea region of Ukraine, but we are awaiting a determination from OFAC on that application. We are deeply sorry the U.S. government has determined that we have to block these learners, and we are working diligently to rectify this situation as soon as possible.

Starts : 2015-05-05
No votes
edX Free Closed [?] Engineering English Business Evaluation Nutrition

In recent years, flying robots such as miniature helicopters or quadrotors have received a large gain in popularity. Potential applications range from aerial filming over remote visual inspection of industrial sites to automatic 3D reconstruction of buildings. Navigating a quadrotor manually requires a skilled pilot and constant concentration. Therefore, there is a strong scientific interest to develop solutions that enable quadrotors to fly autonomously and without constant human supervision. This is a challenging research problem because the payload of a quadrotor is uttermost constrained and so both the quality of the onboard sensors and the available computing power is strongly limited. 

In this course, we will introduce the basic concepts for autonomous navigation for quadrotors. The following topics will be covered:

  • 3D geometry,
  • probabilistic state estimation,
  • visual odometry, SLAM, 3D mapping,
  • linear control.

In particular, you will learn how to infer the position of the quadrotor from its sensor readings and how to navigate it along a trajectory.

The course consists of a series of weekly lecture videos that we be interleaved by interactive quizzes and hands-on programming tasks. For the flight experiments, we provide a browser-based quadrotor simulator which requires the students to write small code snippets in Python.

This course is intended for undergraduate and graduate students in computer science, electrical engineering or mechanical engineering. This course has been offered by TUM for the first time in summer term 2014 on EdX with more than 20.000 registered students of which 1400 passed examination. The MOOC is based on the previous TUM lecture “Visual Navigation for Flying Robots” which received the TUM TeachInf best lecture award in 2012 and 2013.

FAQ

Do I need to buy a textbook?

No, all required materials will be provided within the courseware. However, if you are interested, we recommend the following additional materials:

  1. This course is based on the TUM lecture Visual Navigation for Flying Robots. The course website contains lecture videos (from last year), additional exercises and the full syllabus: http://vision.in.tum.de/teaching/ss2013/visnav2013
  2. Probabilistic Robotics. Sebastian Thrun, Wolfram Burgard and Dieter Fox. MIT Press, 2005.
  3. Computer Vision: Algorithms and Applications. Richard Szeliski. Springer, 2010.

Do I need to build/own a quadrotor?

No, we provide a web-based quadrotor simulator that will allow you to test your solutions in simulation. However, we took special care that the code you will be writing will be compatible with a real Parrot Ardrone quadrotor. So if you happen to have a Parrot Ardrone quadrotor, we encourage you to try out your solutions for real.

Trusted paper writing service WriteMyPaper.Today will write the papers of any difficulty.