Courses tagged with "Vectors" (67)

Sort by: Name, Rating, Price
Start time: Any, Upcoming, Recent started, New, Always Open
Price: Any, Free, Paid
Starts : 2003-02-01
17 votes
MIT OpenCourseWare (OCW) Free Physical Sciences Infor Information control Information Theory Nutrition Vectors

The fundamental concepts, and approaches of aerospace engineering, are highlighted through lectures on aeronautics, astronautics, and design. Active learning aerospace modules make use of information technology. Student teams are immersed in a hands-on, lighter-than-air (LTA) vehicle design project, where they design, build, and fly radio-controlled LTA vehicles. The connections between theory and practice are realized in the design exercises. Required design reviews precede the LTA race competition. The performance, weight, and principal characteristics of the LTA vehicles are estimated and illustrated using physics, mathematics, and chemistry known to freshmen, the emphasis being on the application of this knowledge to aerospace engineering and design rather than on exposure to new science and mathematics.

Starts : 2005-09-01
17 votes
MIT OpenCourseWare (OCW) Free Physical Sciences Infor Information control Information Theory Nutrition Vectors

The basic objective of Unified Engineering is to give a solid understanding of the fundamental disciplines of aerospace engineering, as well as their interrelationships and applications. These disciplines are Materials and Structures (M); Computers and Programming (C); Fluid Mechanics (F); Thermodynamics (T); Propulsion (P); and Signals and Systems (S). In choosing to teach these subjects in a unified manner, the instructors seek to explain the common intellectual threads in these disciplines, as well as their combined application to solve engineering Systems Problems (SP). Throughout the year, the instructors emphasize the connections among the disciplines.

Starts : 2005-02-01
7 votes
MIT OpenCourseWare (OCW) Free Physical Sciences Infor Information control Information Theory Nutrition Vectors

This course introduces analysis techniques for complex structures and the role of material properties in structural design, failure, and longevity. Students will learn about the energy principles in structural analysis and their applications to statically-indeterminate structures and solid continua. Additionally, the course will examine matrix and finite-element methods of structured analysis including bars, beams, and two-dimensional plane stress elements. Structural materials and their properties will be considered, as will metals and composites. Other topics include modes of structural failure, criteria for yielding and fracture, crack formation and fracture mechanics, and fatigue and design for longevity. Students are expected to apply these concepts to their own structural design projects.

Starts : 2010-09-01
9 votes
MIT OpenCourseWare (OCW) Free Physical Sciences Infor Information control Information Theory Nutrition Vectors

This course will teach fundamentals of control design and analysis using state-space methods. This includes both the practical and theoretical aspects of the topic. By the end of the course, you should be able to design controllers using state-space methods and evaluate whether these controllers are robust to some types of modeling errors and nonlinearities. You will learn to:

  • Design controllers using state-space methods and analyze using classical tools.
  • Understand impact of implementation issues (nonlinearity, delay).
  • Indicate the robustness of your control design.
  • Linearize a nonlinear system, and analyze stability.

Other Versions

Related Content

Starts : 2003-02-01
12 votes
MIT OpenCourseWare (OCW) Free Physical Sciences Infor Information control Information Theory Nutrition Vectors

This undergraduate course builds upon the dynamics content of Unified Engineering, a sophomore course taught in the Department of Aeronautics and Astronautics at MIT. Vector kinematics are applied to translation and rotation of rigid bodies. Newtonian and Lagrangian methods are used to formulate and solve equations of motion. Additional numerical methods are presented for solving rigid body dynamics problems. Examples and problems describe applications to aircraft flight dynamics and spacecraft attitude dynamics.

Starts : 2003-09-01
12 votes
MIT OpenCourseWare (OCW) Free Physical Sciences Infor Information control Information Theory Nutrition Vectors

The Experimental Project Lab in the Department of Aeronautics and Astronautics is a two-semester course sequence: 16.621 Experimental Projects I and 16.622 Experimental Projects II (this course). Students in 16.622 gain practical insight and improved understanding of engineering experimentation through design and execution of "project" experiments. Building upon work in course 16.621, students construct and test equipment, make systematic experimental measurements of phenomena, analyze data, and compare theoretical predictions with results. Deliverables comprise a written final project report and formal oral presentations. Instructions on oral presentations and multi-section reporting are given. Experimental Projects I and II provide a valuable link between theory (16.621) and practice (16.622).

Starts : 2008-01-01
13 votes
MIT OpenCourseWare (OCW) Free Closed [?] Physical Sciences Infor Information control Information Theory Nutrition Vectors

This course introduces the fundamental Lean Six Sigma principles that underlay modern continuous improvement approaches for industry, government and other organizations. Lean emerged from the Japanese automotive industry, particularly Toyota, and is focused on the creation of value through the relentless elimination of waste. Six Sigma is a quality system developed at Motorola which focuses on elimination of variation from all processes. The basic principles have been applied to a wide range of organizations and sectors to improve quality, productivity, customer satisfaction, employee satisfaction, time-to-market and financial performance.

This course is offered during the Independent Activities Period (IAP), which is a special 4-week term at MIT that runs from the first week of January until the end of the month.

Starts : 2011-02-01
18 votes
MIT OpenCourseWare (OCW) Free Physical Sciences Infor Information control Information Theory Nutrition Vectors

This course provides an introduction to the transportation industry's major technical challenges and considerations. For upper level undergraduates interested in learning about the transportation field in a broad but quantitative manner. Topics include road vehicle engineering, internal combustion engines, batteries and motors, electric and hybrid powertrains, urban and high speed rail transportation, water vessels, aircraft types and aerodynamics, radar, navigation, GPS, GIS. Students will complete a project on a subject of their choosing.

Starts : 2007-01-01
10 votes
MIT OpenCourseWare (OCW) Free Physical Sciences Infor Information control Information Theory Nutrition Vectors

This course provides students with an opportunity to conceive, design and implement a product, using rapid prototyping methods and computer-aid tools. The first of two phases challenges each student team to meet a set of design requirements and constraints for a structural component. A course of iteration, fabrication, and validation completes this manual design cycle. During the second phase, each team conducts design optimization using structural analysis software, with their phase one prototype as a baseline.

Acknowledgements

This course is made possible thanks to a grant by the alumni sponsored Teaching and Education Enhancement Program (Class of '51 Fund for Excellence in Education, Class of '55 Fund for Excellence in Teaching, Class of '72 Fund for Educational Innovation). The instructors gratefully acknowledge the financial support. The course was approved by the Undergraduate Committee of the MIT Department of Aeronautics and Astronautics in 2003. The instructors thank Prof. Manuel Martinez-Sanchez and the committee members for their support and suggestions.

Starts : 2004-02-01
13 votes
MIT OpenCourseWare (OCW) Free Physical Sciences Infor Information control Information Theory Nutrition Vectors

This course meets weekly to discuss recent aerospace history and current events, in order to understand how they are responsible for the state of the aerospace industry. With invited subject matter experts participating in nearly every session, students have an opportunity to hone their insight through truly informed discussion. The aim of the course is to prepare junior and senior level students for their first industry experiences.

Starts : 2002-02-01
10 votes
MIT OpenCourseWare (OCW) Free Physical Sciences Infor Information control Information Theory Nutrition Vectors

Space Systems Engineering (16.83X) is the astronautical capstone course option in the Department of Aeronautics and Astronautics.  Between Spring 2002 and Spring 2003, the course was offered in a 3-semester format, using a Conceive, Design, Implement and Operate (C-D-I-O) teaching model. 16.83X is shorthand for the three course numbers: 16.83, 16.831, and 16.832. The first semester (16.83) is the Conceive-Design phase of the project, which results in a detailed system design, but precedes assembly.  The second semester (16.831) is the Implement phase, and involves building the students' system.  The final semester (16.832) is the Operate phase, in which the system is tested and readied to perform in its intended environment.

This year's project objective was to demonstrate the feasibility of an electromagnetically controlled array of formation flying satellites.  The project, "EMFFORCE", was an extension of the first C-D-I-O course project, "SPHERES", which ran from Spring 1999 through Spring 2000, and demonstrated satellite formation flying using gas thrusters for station-keeping.  The whole class works on the same project, but divides into smaller subsystem teams, such as power, metrology, and structures, to handle design details.

Starts : 2005-02-01
15 votes
MIT OpenCourseWare (OCW) Free Closed [?] Engineering Infor Information control Information Theory Nutrition Vectors

This course serves as an introduction to computational techniques arising in aerospace engineering. Applications are drawn from aerospace structures, aerodynamics, dynamics and control, and aerospace systems. Techniques include: numerical integration of systems of ordinary differential equations; finite-difference, finite-volume, and finite-element discretization of partial differential equations; numerical linear algebra; eigenvalue problems; and optimization with constraints.

Starts : 2009-09-01
15 votes
MIT OpenCourseWare (OCW) Free Physical Sciences Infor Information control Information Theory Nutrition Vectors

Numerous recent studies have shown that the U.S. has relatively low percentages of students who enter science and engineering and a high drop-out rate. Some other countries are producing many more scientists and engineers per capita than the U.S. What does this mean for the future of the U.S. and the global economy?

In this readings and discussion-based seminar you will meet weekly with the Dean of Undergraduate Education to explore the kind of education MIT and other institutions are and should be giving. Based on data from National Academy and other reports, along with what pundits have been saying, we'll see if we can decide how much the U.S. may or may not be at risk.

Starts : 2003-02-01
17 votes
MIT OpenCourseWare (OCW) Free Physical Sciences Infor Information environments Information Theory Nutrition Vectors

The course begins with the basics of compressible fluid dynamics, including governing equations, thermodynamic context and characteristic parameters. The next large block of lectures covers quasi-one-dimensional flow, followed by a discussion of disturbances and unsteady flows. The second half of the course comprises gas dynamic discontinuities, including shock waves and detonations, and concludes with another large block dealing with two-dimensional flows, both linear and non-linear.

Starts : 2004-09-01
11 votes
MIT OpenCourseWare (OCW) Free Physical Sciences Infor Information environments Information Theory Nutrition Vectors

The major themes of this course are estimation and control of dynamic systems. Preliminary topics begin with reviews of probability and random variables. Next, classical and state-space descriptions of random processes and their propagation through linear systems are introduced, followed by frequency domain design of filters and compensators. From there, the Kalman filter is employed to estimate the states of dynamic systems. Concluding topics include conditions for stability of the filter equations.

Starts : 2008-09-01
8 votes
MIT OpenCourseWare (OCW) Free Physical Sciences Infor Information environments Information Theory Nutrition Vectors

This course covers the fundamentals of astrodynamics, focusing on the two-body orbital initial-value and boundary-value problems with applications to space vehicle navigation and guidance for lunar and planetary missions, including both powered flight and midcourse maneuvers. Other topics include celestial mechanics, Kepler's problem, Lambert's problem, orbit determination, multi-body methods, mission planning, and recursive algorithms for space navigation. Selected applications from the Apollo, Space Shuttle, and Mars exploration programs are also discussed.

Starts : 2005-09-01
13 votes
MIT OpenCourseWare (OCW) Free Computer Sciences Infor Information environments Information Theory Nutrition Vectors

This is a reading and discussion subject on issues in the engineering of software systems and software development project design. It includes the present state of software engineering, what has been tried in the past, what worked, what did not, and why. Topics may differ in each offering, but will be chosen from: the software process and lifecycle; requirements and specifications; design principles; testing, formal analysis, and reviews; quality management and assessment; product and process metrics; COTS and reuse; evolution and maintenance; team organization and people management; and software engineering aspects of programming languages.

Starts : 2004-02-01
9 votes
MIT OpenCourseWare (OCW) Free Physical Sciences Infor Information environments Information Theory Nutrition Vectors

Human Supervisory Control of Automated Systems discusses elements of the interactions between humans and machines.  These elements include: assignment of roles and authority; tradeoffs between human control and human monitoring; and human intervention in automatic processes.  Further topics comprise: performance, optimization and social implications of the system; enhanced human interfaces; decision aiding; and automated alterting systems.  Topics refer to applications in aerospace, industrial and transportation systems.

Starts : 2006-02-01
16 votes
MIT OpenCourseWare (OCW) Free Physical Sciences Infor Information environments Information Theory Nutrition Vectors

This course introduces students to a quantitative approach to studying the problems of physiological adaptation in altered environments, especially microgravity and partial gravity environments. The course curriculum starts with an Introduction and Selected Topics, which provides background information on the physiological problems associated with human space flight, as well as reviewing terminology and key engineering concepts. Then curriculum modules on Bone Mechanics, Muscle Mechanics, Musculoskeletal Dynamics and Control, and the Cardiovascular System are presented. These modules start out with qualitative and biological information regarding the system and its adaptation, and progresses to a quantitative endpoint in which engineering methods are used to analyze specific problems and countermeasures. Additional course curriculum focuses on interdisciplinary topics, suggestions include extravehicular activity and life support. The final module consists of student term project work.

Starts : 2011-09-01
17 votes
MIT OpenCourseWare (OCW) Free Physical Sciences Infor Information environments Information Theory Nutrition Vectors

Each term, the class selects a new set of professional journal articles on bioengineering topics of current research interest. Some papers are chosen because of particular content, others are selected because they illustrate important points of methodology. Each week, one student leads the discussion, evaluating the strengths, weaknesses, and importance of each paper. Subject may be repeated for credit a maximum of four terms. Letter grade given in the last term applies to all accumulated units of 16.459.

Trusted paper writing service WriteMyPaper.Today will write the papers of any difficulty.