Courses tagged with "Chemical reactions (stoichiometry)" (66)

Sort by: Name, Rating, Price
Start time: Any, Upcoming, Recent started, New, Always Open
Price: Any, Free, Paid
4 votes
Saylor.org Free Closed [?] Life Sciences Chemical reactions (stoichiometry) Nutrition Taking derivatives

This course is a continuation of CHEM103 [1]: Organic Chemistry I.  As you progress through the units below, you will continue to learn the different chemical reactions characteristic of each family of organic compounds.  We will focus on four most important classes of reactions: electrophilic substitution at aromatic rings, nucleophilic addition at carbonyl compounds, hydrolysis of carboxylic acids, and carbon-carbon bond formation using enolates.  The enolate portion of this course will cover the reactivity of functional groups. We will also look at synthetic strategies for making simple, small organic molecules, using the knowledge of organic chemistry accumulated thus far.  At the end of this course, you will possess the tools you need to plan the synthesis of fairly complicated molecules, like those used in pharmaceutics.  From the perspective of a synthetic organic chemist, the two most challenging aspects of synthesizing drug molecules are the incorporation of  "molecular rings" (rings of 5, 6,…

4 votes
Saylor.org Free Closed [?] Life Sciences Chemical reactions (stoichiometry) Nutrition Taking derivatives

Physics 101 is the first course in the Introduction to Physics sequence. In general, the quest of physics is to develop descriptions of the natural world that correspond  closely to actual observations.  Given this definition, the story behind everything in the universe is  one of physics.  In practice,  the field of physics is more often limited to the discovery and refinement of the basic laws that underlie the behavior of matter and energy.  While biology is founded upon physics, in practice, the study of biology generally assumes that the present understanding of physical laws is accurate.  Chemistry is more closely dependent on physics and   assumes that physical laws provide accurate predictions.  Engineering, for the most part, is applied physics. In this course, we will study physics from the ground up, learning the basic principles of physical laws, their application to the behavior of objects, and the use of the scientific method in driving advances in this knowledge.  This first course o…

4 votes
Saylor.org Free Closed [?] Life Sciences Chemical reactions (stoichiometry) Nutrition Taking derivatives

Neurobiology is all about the biology of our nervous system, from the spinal cord to the brainand everything in between. The nervous system allows us to have conscious thoughts, enables us to learn, and gives us voluntary control of our muscles. Our understanding of neuroscience begins with the ancient Egyptians, who practiced surgical drilling to treat certain neurological disorders. The earliest philosophers believed that the heart (not the brain) was the center of consciousness and intelligence. As scientific knowledge matured and developed, philosophers disproved that belief but discovered that there is much more to neurobiology than “the brain.” Researchers found that there are literally hundreds of billions of nerves and other cells that cooperate and share information to make the nervous system work. Accordingly, neurobiology is an extremely complex field of study. This course is designed to provide you with an overview of the most important areas of neurobiological study. We will not pay much…

4 votes
Saylor.org Free Closed [?] Life Sciences Chemical reactions (stoichiometry) Nutrition Taking derivatives

This lab course supplements BIO304: Human Physiology [1].  Although we cannot virtually replicate the lab experience, this “lab” will familiarize you with scientific thinking and techniques and will enable you to explore of some key principles of human physiology. The material in this lab supplement relates to the material covered in the lecture and reading portion of the course.  While the lecture and reading portion focuses on big-picture concepts, here we will focus more on visual understanding, manipulation, and practical use of your knowledge.  You will review the physiology of the organ systems by using images of models, experiments, and videos.  Then you will be asked to assess your knowledge, which eventually can be put to practical or experimental use. Co-requisite: BIO304: Human Physiology [2]. [1] http://www.saylor.org/courses/bio304/ [2] http://www.saylor.org/courses/bio304/…

3 votes
Saylor.org Free Closed [?] Life Sciences Chemical reactions (stoichiometry) Nutrition Taking derivatives

Organic chemistry is a branch of chemistry that focuses on a single element: carbon!  Carbon bonds strongly with other carbon atoms and with other elements, forming numerous chain and ring structures.  As a result, there are millions of distinct carbon compounds known and classified.  The vast majority of the molecules that contain carbon are considered organic molecules, with few debatable exceptions such as carbon nanotubes, diamonds, carbonate ions, and carbon dioxide.  Carbon is central to the existence of life as it is an essential component of nucleic acids (DNA and RNA), sugars, lipids, and proteins.  A well-rounded student of science must take courses in organic chemistry to understand its application to various topics, such as the study of polymers (plastics and other materials), hydrocarbons, pharmaceuticals, molecular biology, biochemistry, and other life sciences. In the first semester of organic chemistry, you will learn the basic concepts needed to understand the three-dimensional structu…

3 votes
Saylor.org Free Closed [?] Life Sciences Chemical reactions (stoichiometry) Hormonal+activity Information policy Intellectual property Janux Nutrition

Even in ancient times, scholars believed that diseases could be spread by organisms too small to be seen by the naked eye. Before we discovered that bacteria cells were the real culprits, many attributed disease to other sources. Now that scientists have definitively identified the microscopic causes of various infectious diseases, microbiology, or the study of microscopic-sized organisms, has become an increasingly important field in biology and in the larger biomedical community. Most microbes are harmless. Some of them are essential for life on Earth, e.g. through their ability to fix nitrogen. Biotechnology, which is truly the industry of our times, takes advantage of microbes for the production of a variety of complex substances, and it also mass-produces natural and engineered microbes for human use. This course will cover a range of diverse areas of microbiology, including virology, bacteriology, and applied microbiology. This course will focus on the medical aspects of microbiology, as medical res…

3 votes
Saylor.org Free Closed [?] Life Sciences Chemical reactions (stoichiometry) Nutrition Taking derivatives

Ecology is the study of interactions between organisms and between organisms and their environments.  Population ecology is the subfield of ecology that identifies those ecological factorsin the community or in the ecosystemthat regulate a population’s size. Ecosystems and communities involve complex interactions that have evolved over long periods of time.  The species that are present and the interactions we see between them are the result of evolution under the unique environmental pressures that exist in a given environment.  These interactions may be delicately intertwined, such that the loss of a single species from a community could mean the collapse of the entire community in a domino effect.  Thus, biologists are concerned with the preservation of biodiversity in ecosystemsretaining as many different species in the ecosystem as possible so the intricate relationships among species are preserved. In recent years, we have seen a decrease in the biodiversity of ecosystems.  Human activities a…

2 votes
Saylor.org Free Closed [?] Life Sciences Chemical reactions (stoichiometry) Nutrition Taking derivatives

In this course, you will look at the properties behind the basic concepts of probability and statistics and focus on applications of statistical knowledge.  You will learn about how statistics and probability work together.  The subject of statistics involves the study of methods for collecting, summarizing, and interpreting data.  Statistics formalizes the process of making decisions, and this course is designed to help you use statistical literacy to make better decisions.  Note that this course has applications for the natural sciences, economics, computer science, finance, psychology, sociology, criminology, and many other fields. We read data in articles and reports every day.  After finishing this course, you should be comfortable evaluating an author's use of data.  You will be able to extract information from articles and display that information effectively.  You will also be able to understand the basics of how to draw statistical conclusions. This course will begin with descriptive statistic…

2 votes
Saylor.org Free Closed [?] Life Sciences Chemical reactions (stoichiometry) Nutrition Taking derivatives

Biochemistry is the study of the chemical processes and compounds, such as cellular makeup, that bring about life in organisms.  It is a combination of multiple science fields; you can think of it as general and cell biology coupled with organic and general chemistry.  Although living organisms are very complex, from a molecular view, the material that constitutes “life” can be broken down into remarkably simple molecules, much like the breakdown of our English language to the English alphabet.  Although there exists thousands upon thousands of molecules, they all breakdown into four core components: nucleic acids, amino acids, lipids, and carbohydrates.  As we can make hundreds of thousands of words from just 26 letters, we can make thousands of different biomolecules from those 4 components.  For example, the human genome, containing the necessary information to create a human being, is really just one very long strand of 4 different nucleotides. This course is structured around that approach, so…

2 votes
Saylor.org Free Closed [?] Life Sciences Chemical reactions (stoichiometry) Nutrition Taking derivatives

The advent of computers transformed science.  Large, complicated datasets that once took researchers years to manually analyze could suddenly be analyzed within a week using computer software.  Nowadays, scientists can use computers to produce several hypotheses as to how a particular phenomenon works, create computer models using the parameters of each hypothesis, input data, and see which hypothetical model produces an output that most closely mirrors reality. Computational biology refers to the use of computers to automate data analysis or model hypotheses in the field of biology.  With computational biology, researchers apply mathematics to biological phenomena, use computer programming and algorithms to artificially create or model the phenomena, and draw from statistics in order to interpret the findings.  In this course, you will learn the basic principles and procedures of computational biology.  You will also learn various ways in which you can apply computational biology to molecular and cell…

2 votes
Study.com Free Closed [?] Life Sciences Chemical reactions (stoichiometry) Hormonal+activity Information policy Intellectual property Janux SQL+Server

Get a basic overview of microbiology before exploring advanced topics like bacterial cell morphology, nitrogen fixation and protozoan diseases through this online Education Portal course, Biology 103: Microbiology. Watch our video lessons on STDs, bacterial diseases and foodborne illnesses as you prepare to earn real college credit through the Microbiology Excelsior Exam . Though the subjects covered in these lessons are somewhat intense, our experienced, knowledgeable instructors have kept the videos brief, engaging and easy to follow. You also can benefit from the multiple-choice quizzes and written transcripts that complement each video.

1 votes
Saylor.org Free Closed [?] Life Sciences Chemical reactions (stoichiometry) Nutrition Taking derivatives

This lab course supplements BIO101 [1]: “Introduction to Molecular and Cellular Biology.”  Although we cannot virtually replicate a true lab experience, this “lab” will allow you to become familiar with scientific thinking and techniques and will enable you to explore of some key principles of molecular and cellular biology. The material in this lab supplement directly relates to the material covered in the lecture and reading portion of the course.  While the lecture and reading portion focuses on big-picture concepts, here we will focus more on visual understanding, manipulation, and practical use of your knowledge.  In each unit, you will work through tutorials related to important scientific concepts, and then will be asked to think creatively about how your knowledge can be put to practical or experimental use. There are also activities devoted to learning important techniques in scientific study, including microscope use, DNA extraction, Polymerase Chain Reaction, and DNA microarrays.  A…

1 votes
Saylor.org Free Closed [?] Life Sciences Chemical reactions (stoichiometry) Nutrition Taking derivatives

In BIO101 [1], you were introduced to biology on a microscopic scale when you learned about the functions of molecules, genes, and cells.  In this course, you will learn about biological changes that happen on a very large scale, across entire populations of organisms and over the course of millions of years, in the form of evolution and ecology.  Evolution, the process by which different species of organisms have developed and diversified from their evolutionary forbears, has been a central theme in the field of biology ever since Darwin first published his theories about it.  Mounting evidence from many different branches of science all point to the fact that species have experienced a gradual but definite physical change.  In this course, we will learn about evolution and theories that stem from evolution. We will also learn about ecology, the study of the interactions between different types of organisms and their surroundings.  Changes in surroundings will force organisms to adapt and changeoften…

1 votes
Saylor.org Free Closed [?] Life Sciences Chemical reactions (stoichiometry) Nutrition Taking derivatives

Developmental biology asks questions about how organisms come into being, how life forms, and how complex structures develop and are differentiated.  These fundamental questions have been the subject of research for centuries; accordingly, this course you will teach you not only about the beginnings of organisms, but about the beginnings of developmental biology as a science.  Currently, developmental biologists use a range of tools and research focifrom molecular techniques to surgical manipulations to chemical and environmental studiesto answer these questions.  Their approaches are multi-faceted because developmental biology itself addresses topics of importance to a wide range of fields, from molecular biology to neuroscience to evolutionary biology. In this course, you will learn about the field of developmental biology from its origins to the present day.  We will take a look at historical experiments as well as modern techniques and the mechanisms of development.  You will follow a variety of me…

1 votes
Saylor.org Free Closed [?] Life Sciences Chemical reactions (stoichiometry) Nutrition Taking derivatives

The purpose of this course is to explore the subject of human disease, placing special emphasis on the cause of disease at the tissue level.  We will pay close attention to the underlying mechanisms that initiate and perpetuate the disease state.  Much can be learned about the causes of disease at the molecular and cellular level; we will accordingly spend quite a bit of time examining molecules, cells, and tissues and determining how the disruption of their normal functioning by various known and unknown causes can lead to disease. We will begin this course with a basic review of molecules, cells, and tissues in the human body.  We will then discuss the body’s first line of defense, the inflammatory reaction, and the immune system. Finally, we will survey the body’s organ systems.  We will approach each of the systems by examining the ways in which a prototype disease impacts its functioning.  (These “prototypes” will be diseases that impact a large number of patients around the world.)  We…

1 votes
Saylor.org Free Closed [?] Life Sciences Chemical reactions (stoichiometry) Nutrition Taking derivatives

This introductory course in biology starts at the microscopic level, with molecules and cells. Before we get into the specifics of cell structure and behavior, however, let’s take a cursory glance at the field of biology more generally. Though biology as we know it today is a relatively new field, we have been studying living things since the beginning of recorded history. The invention of the microscope was the turning point in the history of biology; it paved the way for scientists to discover bacteria and other tiny organisms and ultimately led to the modern cell theory of biology. You will notice that, unlike the core program courses you took in chemistry and physics, introductory biology does not have many mathematical “laws” and “rules” and does not require much math. Instead, you will learn a great number of new terms and concepts that will help you describe life at the smallest level. Over the course of this semester, you will recognize the ways in which the tiniest of molecules are involved…

1 votes
Saylor.org Free Closed [?] Life Sciences Chemical reactions (stoichiometry) Nutrition Taking derivatives

Welcome to BIO101B, Introduction to Molecular and Cellular Biology.  This course is intended for the student interested in understanding and appreciating common biological topics in the study of the smallest units within biology: molecules and cells. Molecular and cellular biology is a dynamic field.  There are thousands of opportunities within the medical, pharmaceutical, agricultural, and industrial fields (just to name a few) for a person with a concentrated knowledge of molecular and cellular processes.  This course will give you a general introduction of these topics.  In addition to preparing for a diversity of career paths, an understanding of molecular and cell biology will help you make sound decisions in your everyday life that can positively impact your diet and health. Note that this course is an alternative to BIO101A [1], and that you may choose to take either BIO101A or BIO101B in order to learn about Molecular and Cellular Biology.  These courses cover the same material, but in a slig…

1 votes
Saylor.org Free Closed [?] Life Sciences Chemical reactions (stoichiometry) Nutrition Taking derivatives

This chemistry survey is designed to introduce students to the world of chemistry.  The principles of chemistry were first identified, studied, and applied by ancient Egyptians in order to extract metal from ores, make alcoholic beverages, glaze pottery, turn fat into soap, and much more.  What began as a quest to build better weapons or create potions capable of ensuring everlasting life has since become the foundation of modern science.  Take a look around you: chemistry makes up almost everything you touch, see, and feel, from the shampoo you used this morning to the plastic container that holds your lunch.  In this course, we will study chemistry from the ground up, learning the basics of the atom and its behavior.  We will use this knowledge to understand the chemical properties of matter and the changes and reactions that take place in all types of matter.

1 votes
Saylor.org Free Closed [?] Life Sciences Chemical reactions (stoichiometry) Nutrition Taking derivatives

In this second semester course, we will cover a wide-ranging field of topics, learning everything from the equation that made Einstein famous to why you can’t replace a dead car battery with a household battery. In General Chemistry I (CHEM101 [1]), we studied the basic tools you need to explore different fields in chemistry, such as stoichiometry and thermodynamics.  This second-semester course will cover several of the tools needed to study chemistry at a more advanced level.  We will identify the factors that affect the speed of a reaction, learn how an atom bomb works on a chemical level, and discover how chemistry powers a light bulb.  Topics in advanced organic and inorganic chemistry courses will build upon what you learn in this class.  We will end with discussion of organic chemistry, a topic that is as important to biology as it is to chemistry. [1] http:///courses/chem101/…

Starts : 2014-06-30
No votes
Iversity Free Closed [?] Life Sciences English Brain stem Chemical reactions (stoichiometry) Department of Anthropology at the University of Oklahoma History+of+Math Information policy Sequences+and+induction

DNA stores our genetic information and many diseases are caused by changes in its sequences. We will first learn about the basics of DNA and then find out how it allows for the development of diagnostic and therapeutic strategies.

Trusted paper writing service WriteMyPaper.Today will write the papers of any difficulty.