Courses tagged with "Information environments" (108)

Sort by: Name, Rating, Price
Start time: Any, Upcoming, Recent started, New, Always Open
Price: Any, Free, Paid
Starts : 2006-09-01
12 votes
MIT OpenCourseWare (OCW) Free Engineering Infor Information environments Information Theory Janux Nutrition

The class will cover quantitative techniques of Operations Research with emphasis on applications in transportation systems analysis (urban, air, ocean, highway, pick-up and delivery systems) and in the planning and design of logistically oriented urban service systems (e.g., fire and police departments, emergency medical services, emergency repair services). It presents a unified study of functions of random variables, geometrical probability, multi-server queueing theory, spatial location theory, network analysis and graph theory, and relevant methods of simulation. There will be discussion focused on the difficulty of implementation, among other topics.

Starts : 2007-01-01
4 votes
MIT OpenCourseWare (OCW) Free Engineering Infor Information environments Information Theory International development Nutrition

This course begins with a comparative review of conventional and advanced multiple attribute decision making (MADM) models in engineering practice. Next, a new application of particular MADM models in reliable material selection of sensitive structural components as well as a multi-criteria Taguchi optimization method is discussed. Other specific topics include dealing with uncertainties in material properties, incommensurability in decision-makers opinions for the same design, objective ways of weighting performance indices, rank stability analysis, compensations and non-compensations.

This course is offered during the Independent Activities Period (IAP), which is a special 4-week term at MIT that runs from the first week of January until the end of the month.

Starts : 2004-09-01
10 votes
MIT OpenCourseWare (OCW) Free Engineering Infor Information environments Information Theory International development Nutrition

This course is about maneuvering motions of surface and underwater vehicles. Topics covered include: derivation of equations of motion, hydrodynamic coefficients, memory effects, linear and nonlinear forms of the equations of motion, control surfaces modeling and design, engine, propulsor, and transmission systems modeling and simulation during maneuvering. The course also deals with stability of motion, principles of multivariable automatic control, optimal control, Kalman filtering, and loop transfer recovery. We will also explore applications chosen from autopilots for surface vehicles; towing in open seas; and remotely operated vehicles.

This course was originally offered in Course 13 (Department of Ocean Engineering) as 13.49. In 2005, ocean engineering subjects became part of Course 2 (Department of Mechanical Engineering), and this course was renumbered 2.154.

Starts : 2010-02-01
10 votes
MIT OpenCourseWare (OCW) Free Engineering Infor Information environments Information Theory International development Nutrition

This course covers the following topics: models of manufacturing systems, including transfer lines and flexible manufacturing systems; calculation of performance measures, including throughput, in-process inventory, and meeting production commitments; real-time control of scheduling; effects of machine failure, set-ups, and other disruptions on system performance.

Starts : 2005-02-01
12 votes
MIT OpenCourseWare (OCW) Free Engineering Infor Information environments Information Theory International development Nutrition

In this course the fundamentals of fluid mechanics are developed in the context of naval architecture and ocean science and engineering. The various topics covered are: Transport theorem and conservation principles, Navier-Stokes' equation, dimensional analysis, ideal and potential flows, vorticity and Kelvin's theorem, hydrodynamic forces in potential flow, D'Alembert's paradox, added-mass, slender-body theory, viscous-fluid flow, laminar and turbulent boundary layers, model testing, scaling laws, application of potential theory to surface waves, energy transport, wave/body forces, linearized theory of lifting surfaces, and experimental project in the towing tank or propeller tunnel.

This subject was originally offered in Course 13 (Department of Ocean Engineering) as 13.021. In 2005, ocean engineering became part of Course 2 (Department of Mechanical Engineering), and this subject was renumbered 2.20.

Starts : 2006-09-01
9 votes
MIT OpenCourseWare (OCW) Free Closed [?] Engineering Infor Information environments Information Theory International development Nutrition

This course discusses the selection and evaluation of commercial and naval ship power and propulsion systems. It will cover the analysis of propulsors, prime mover thermodynamic cycles, propeller-engine matching, propeller selection, waterjet analysis, and reviews alternative propulsors. The course also investigates thermodynamic analyses of Rankine, Brayton, Diesel, and Combined cycles, reduction gears and integrated electric drive. Battery operated vehicles and fuel cells are also discussed. The term project requires analysis of alternatives in propulsion plant design for given physical, performance, and economic constraints. Graduate students complete different assignments and exams.

Starts : 2007-09-01
16 votes
MIT OpenCourseWare (OCW) Free Engineering Infor Information environments Information Theory Janux Nutrition

This course is a core requirement for the Masters in Engineering program, designed to teach students about the roles of today's professional engineer and expose them to team-building skills through lectures, team workshops, and seminars. Topics include: written and oral communication, job placement skills, trends in the engineering and construction industry, risk analysis and risk management, managing public information, proposal preparation, project evaluation, project management, liability, professional ethics, and negotiation. The course draws on relevant large-scale projects to illustrate each component of the subject.

Starts : 2004-09-01
11 votes
MIT OpenCourseWare (OCW) Free Engineering Infor Information environments Information Theory International development Nutrition

The course presents a systematic approach to design and assembly of mechanical assemblies, which should be of interest to engineering professionals, as well as post-baccalaureate students of mechanical, manufacturing and industrial engineering. It introduces mechanical and economic models of assemblies and assembly automation at two levels. "Assembly in the small" includes basic engineering models of part mating, and an explanation of the Remote Center Compliance. "Assembly in the large" takes a system view of assembly, including the notion of product architecture, feature-based design, and computer models of assemblies, analysis of mechanical constraint, assembly sequence analysis, tolerances, system-level design for assembly and JIT methods, and economics of assembly automation. Class exercises and homework include analyses of real assemblies, the mechanics of part mating, and a semester long project. Case studies and current research are included.

Starts : 2014-09-01
14 votes
MIT OpenCourseWare (OCW) Free Engineering Infor Information environments Information Theory International development Nutrition

This course is an introduction to designing mechatronic systems, which require integration of the mechanical and electrical engineering disciplines within a unified framework. There are significant laboratory-based design experiences. Topics covered in the course include: Low-level interfacing of software with hardware; use of high-level graphical programming tools to implement real-time computation tasks; digital logic; analog interfacing and power amplifiers; measurement and sensing; electromagnetic and optical transducers; control of mechatronic systems.

Starts : 2006-09-01
14 votes
MIT OpenCourseWare (OCW) Free Engineering Infor Information environments Information Theory International development Nutrition

This course models multi-domain engineering systems at a level of detail suitable for design and control system implementation. Topics include network representation, state-space models; multi-port energy storage and dissipation, Legendre transforms; nonlinear mechanics, transformation theory, Lagrangian and Hamiltonian forms; and control-relevant properties. Application examples may include electro-mechanical transducers, mechanisms, electronics, fluid and thermal systems, compressible flow, chemical processes, diffusion, and wave transmission.

Starts : 2003-09-01
10 votes
MIT OpenCourseWare (OCW) Free Engineering Infor Information environments Information Theory Janux Nutrition

This course presents a rational basis for the preliminary design of motion-sensitive structures. Topics covered include: analytical and numerical techniques for establishing the optimal stiffness distribution, the role of damping in controlling motion, tuned mass dampers, base isolation systems, and active structural control. Examples illustrating the application of the motion-based design paradigm to building structures subjected to seismic excitation are discussed.

Starts : 2004-09-01
12 votes
MIT OpenCourseWare (OCW) Free Engineering Infor Information environments Information Theory International development Nutrition

Multi-scale systems (MuSS) consist of components from two or more length scales (nano, micro, meso, or macro-scales). In MuSS, the engineering modeling, design principles, and fabrication processes of the components are fundamentally different. The challenge is to make these components so they are conceptually and model-wise compatible with other-scale components with which they interface. This course covers the fundamental properties of scales, design theories, modeling methods and manufacturing issues which must be addressed in these systems. Examples of MuSS include precision instruments, nanomanipulators, fiber optics, micro/nano-photonics, nanorobotics, MEMS (piezoelectric driven manipulators and optics), X-Ray telescopes and carbon nano-tube assemblies. Students master the materials through problem sets and a project literature critique.

Starts : 2012-02-01
8 votes
MIT OpenCourseWare (OCW) Free Closed [?] Engineering Infor Information environments Information Theory International development Nutrition

Parallel treatments of photons, electrons, phonons, and molecules as energy carriers, aiming at fundamental understanding and descriptive tools for energy and heat transport processes from nanoscale continuously to macroscale. Topics include the energy levels, the statistical behavior and internal energy, energy transport in the forms of waves and particles, scattering and heat generation processes, Boltzmann equation and derivation of classical laws, deviation from classical laws at nanoscale and their appropriate descriptions, with applications in nano- and microtechnology.

Starts : 2007-02-01
12 votes
MIT OpenCourseWare (OCW) Free Engineering Infor Information environments Information Theory International development Nutrition

This graduate-level course provides a unified treatment of nonlinear oscillations and wave phenomena with applications to mechanical, optical, geophysical, fluid, electrical and flow-structure interaction problems.

Starts : 2015-02-01
15 votes
MIT OpenCourseWare (OCW) Free Engineering Infor Information environments Information Theory International development Nutrition

This course is an introduction to numerical methods and MATLAB®: Errors, condition numbers and roots of equations. Topics covered include Navier-Stokes; direct and iterative methods for linear systems; finite differences for elliptic, parabolic and hyperbolic equations; Fourier decomposition, error analysis and stability; high-order and compact finite-differences; finite volume methods; time marching methods; Navier-Stokes solvers; grid generation; finite volumes on complex geometries; finite element methods; spectral methods; boundary element and panel methods; turbulent flows; boundary layers; and Lagrangian coherent structures (LCSs).

Prof. Pierre Lermusiaux is very grateful to the teaching assistants Dr. Matt Ueckermann, Dr. Tapovan Lolla, Mr. Jing Lin, and Mr. Arpit Agarwal for their contributions to the course over the years.

 

Starts : 2006-09-01
11 votes
MIT OpenCourseWare (OCW) Free Engineering Infor Information environments Information Theory Introduction to Sociology Nutrition

Numerical methods for solving problems arising in heat and mass transfer, fluid mechanics, chemical reaction engineering, and molecular simulation. Topics: numerical linear algebra, solution of nonlinear algebraic equations and ordinary differential equations, solution of partial differential equations (e.g. Navier-Stokes), numerical methods in molecular simulation (dynamics, geometry optimization). All methods are presented within the context of chemical engineering problems. Familiarity with structured programming is assumed. The examples will use MATLAB®.

Acknowledgements

The instructor would like to thank Robert Ashcraft, Sandeep Sharma, David Weingeist, and Nikolay Zaborenko for their work in preparing materials for this course site.

Starts : 2002-02-01
11 votes
MIT OpenCourseWare (OCW) Free Engineering Infor Information environments Information Theory International development Nutrition

The subject introduces the principles of ocean surface waves and their interactions with ships, offshore platforms and advanced marine vehicles. Surface wave theory is developed for linear and nonlinear deterministic and random waves excited by the environment, ships, or floating structures.

Following the development of the physics and mathematics of surface waves, several applications from the field of naval architecture and offshore engineering are addressed. They include the ship Kelvin wave pattern and wave resistance, the interaction of surface waves with floating bodies, the seakeeping of ships high-speed vessels and offshore platforms, the evaluation of the drift forces and other nonlinear wave effects responsible for the slow-drift responses of compliant offshore platforms and their mooring systems designed for hydrocarbon recovery from large water depths.

This course was originally offered in Course 13 (Department of Ocean Engineering) as 13.022. In 2005, ocean engineering subjects became part of Course 2 (Department of Mechanical Engineering), and this course was renumbered 2.24.

Starts : 2002-02-01
15 votes
MIT OpenCourseWare (OCW) Free Engineering Infor Information environments Information Theory International development Nutrition

This course concerns the theory and practice of optical methods in engineering and system design, with an emphasis on diffraction, statistical optics, holography, and imaging. It provides the engineering methodology skills necessary to incorporate optical components in systems serving diverse areas such as precision engineering and metrology, bio-imaging, and computing (sensors, data storage, communication in multi-processor systems). Experimental demonstrations and a design project are included.

Starts : 2007-02-01
16 votes
MIT OpenCourseWare (OCW) Free Engineering Infor Information environments Information Theory International development Nutrition

This course explores the following topics: derivation of elastic and plastic stress-strain relations for plate and shell elements; the bending and buckling of rectangular plates; nonlinear geometric effects; post-buckling and ultimate strength of cold formed sections and typical stiffened panels used in naval architecture; the general theory of elastic shells and axisymmetric shells; buckling, crushing and bending strength of cylindrical shells with application to offshore structures; and the application to crashworthiness of vehicles and explosive and impact loading of structures. The class is taught during the first half of term.

Starts : 2001-09-01
12 votes
MIT OpenCourseWare (OCW) Free Engineering Infor Information environments Information Theory International development Nutrition

Intensive coverage of precision engineering theory, heuristics, and applications pertaining to the design of systems ranging from consumer products to machine tools. Topics covered include: economics, project management, and design philosophy; principles of accuracy, repeatability, and resolution; error budgeting; sensors; sensor mounting; systems design; bearings; actuators and transmissions; system integration driven by functional requirements, and operating physics. Emphasis on developing creative designs, which are optimized by analytical techniques applied via spreadsheets. This is a projects course with lectures consisting of design teams presenting their work and the class helping to develop solutions; thereby everyone learning from everyone's projects.

Trusted paper writing service WriteMyPaper.Today will write the papers of any difficulty.