Online courses directory (81)

Sort by: Name, Rating, Price
Start time: Any, Upcoming, Recent started, New, Always Open
Price: Any, Free, Paid
5 votes
Saylor.org Free Closed [?] Physical Sciences International development Nutrition Taking derivatives

Dynamics is a sub-branch of the general field of study known as Mechanics.  It is very closely related toand often combined withthe study of Statics, which you encountered in ME102: Mechanics I [1]. In both Statics and Dynamics, we use Newton’s 2nd Law: F = ma.  In Statics, the sum of the applied forces is always zero, thus making the acceleration zero.  This was very important to the structures studied in Statics.  Catastrophe generally results when structures (like bridges and buildings) accelerate.  Very likely you are quite pleasedeven if you do not realize it every timewhen you cross a bridge that does not accelerate while you are on it, and we have Newton’s First Law to thank for it.  Newton’s First Law states that objects will continue to do what they are doing unless unbalanced forces make them do otherwise.  This law includes the law equilibrium condition that the moments will also sum to zero, and that there will thus be no rotational acceleration.  In Dynamics, the sum of the forces…

3 votes
Saylor.org Free Closed [?] Physical Sciences International development Nutrition Taking derivatives

This self-contained course presents a sampling of the fields of Materials Engineering and Materials Science. This course is intended primarily for engineering students who are not planning to major in either Materials Engineering or Materials Science. We will focus primarily on the concerns of the materials engineerthe person interested in choosing materials to make a finished product. This selection is determined by compromises among material properties, ease of fabrication, and cost. In contrast, the materials scientist is concerned with understanding the relationships between material properties and the internal structure of a materialthat is, atomic bonding, arrangements of atoms, grain structure, and other microscopically observable features. We leave most of these associations to advanced courses, which will use more chemistry and physics than needed for this course. The course is divided into four units: Unit 1: Ways That Materials Can Fail  What Can Go Wrong? Unit 2: Classes of Engineering Mate…

8 votes
Saylor.org Free Closed [?] Physical Sciences International development Nutrition Taking derivatives

Heat transfer is the thermal energy in transit due to a spatial temperature difference. The topic of heat transfer has enormous applications in mechanical engineering, ranging from cooling of microelectronics to design of jet engines and operations of nuclear power plants. In this course, you will learn about what heat transfer is, what governs the rate of heat transfer, and why heat transfer is so important. You will also learn about the three major modes of heat transfer: conduction, convection, and radiation.  Heat conduction is the transport of heat through a solid body, by vibrations of molecules or in the case of electrical conductors, by movement of electrons from one molecule to another. Heat convection is a process by which heat is transferred through a fluid by motion of fluid. Thermal radiation is the transport of energy between two bodies by electromagnetic waves. In addition to the three main modes of heat transfer, you will also learn about heat transfer during phase changes (boiling and conden…

4 votes
Saylor.org Free Closed [?] Physical Sciences International development Nutrition Taking derivatives

Numerical methods have been used to solve mathematical expressions of engineering and scientific problems for at least 4000 years (for some historical discussion you may wish to browse the Ethnomathematics Digital Library [1] or the MacTutor History of Mathematics Archive [2] from St. Andrews University).*  Such methods apply numerical approximation in order to convert continuous mathematical problems (for example, determining the mechanical stress throughout a loaded truss) into systems of discrete equations that can be solved with sufficient accuracy by machine. Numerical methods provide a way for the engineer to translate the language of mathematics and physics into information that may be used to make engineering decisions. Often, this translation is implemented so that calculations may be done by machines (computers). The types of problems that you encounter as an engineer may involve a wide variety of mathematical phenomena, and hence it will benefit you to have an equally wide range of numerical met…

4 votes
Saylor.org Free Closed [?] Physical Sciences International development Nutrition Taking derivatives

This course will serve as your introduction to working in an engineering laboratory.  You will learn to gather, analyze, interpret, and explain physical measurements for simple engineering systems in which only a few factors need be considered.  This experience will be crucial to your success in analyzing more complicated systems in subsequent coursework and in the practice of mechanical engineering. We frequently encounter measurement systems in our everyday lives.  Consider the following examples: 1.      The many gauges found on the control panel of a motor vehicle indicate vehicle speed, engine coolant temperature, transmission setting, cabin temperature, engine speed, and oil pressureamongst many other measurements. 2.      A routine visit to a physician often entails several measurements of varying complexityinternal temperature, blood pressure, internal appearance, heart rate, respiration rate, and tissue texture, amongst many, many more. 3.      The experienced cook may use s…

6 votes
Saylor.org Free Closed [?] Physical Sciences International development Nutrition Taking derivatives

Most mechanical engineering systems today involve significant amounts of electrical and electronic control systems. Effectively, most modern mechanical engineering systems are mechatronic systems. Mechatronics is the discipline that results from the synergetic application of electrical, electronic, computer, and control engineering in mechanical engineering systems. Thus, it is essential for the mechanical engineer to have a strong understanding of the composition and design of mechatronic systems, which is the goal of this course. Mechatronic systems are around us everywhere. A car contains many mechatronic systems, such as anti-lock braking systems, traction control, the engine control unit and cruise control, to name a few. A satellite dish position control unit is another example of a mechatronic system. Modern industrial automated processes would not be possible without the discipline of mechatronics, covering areas such as vehicle manufacturing, pharmaceutical industries, and food processing plants. R…

4 votes
Saylor.org Free Closed [?] Physical Sciences International development Nutrition Taking derivatives

This course deals with the transfer of work, energy, and material via gases and liquids.  These fluids may undergo changes in temperature, pressure, density, and chemical composition during the transfer process and may act on or be acted on by external systems.  You must fully understand these processes if you are an engineer working to analyze, troubleshoot, or improve existing processes and/or innovate and design new ones. In your everyday life, you will likely encounter examples of the thermal-fluid systems we will study in this course.  Consider the following scenarios: Read this recent report [1] by Gary Goettling for the Georgia Tech Alumni Association.*  In it, Goettling describes a refrigeration system with no moving parts based on improvements to a patent filed by Einstein and Szilard in 1930.  As an engineer, how would you go about evaluating this design for energy efficiency, safety, reliability, and manufacturing, operating, and installation costs? Have you ever wondered how the level se…

3 votes
Saylor.org Free Closed [?] Physical Sciences International development Nutrition Taking derivatives

Effective communication is essential to teamwork, and teamwork is essential to accomplishing complex engineering work.  In this course, you will learn several aspects of effective technical communication that will help prepare you to work successfully on an engineering team.  The strategies and techniques learned here are also applicable to other situationsfor example, preparing a résumé and cover letter, conducting a successful job interview, negotiating to make a major purchase or sale, and navigating through legal situations that you might encounter. As an example, consider the following situation.  You arrive home after a week-long vacation and find a note on your door saying: Dude My plumber’s cut your phone cord.  I reckon they’ll fix it soon. On the other hand, consider that you find a note resembling:   From: John Atkins      October 24, 2015 2828 Fairlane Rd. Tel: 703-555-4800   To:       Occupant 2824 Fairlane Rd.   I regret to inform you that my plumbing contractor…

1 votes
Saylor.org Free Closed [?] Physical Sciences International development Nutrition Taking derivatives

The study of dynamic systems focuses on the behavior of physical systems as well as the physics of individual components and the interactions between them.  Control systems are designed to enable dynamic systems to respond in a specific manner.  In this course, we will learn about the mathematical modeling, analysis, and control of physical systems that are in rest, in motion, or acted upon by a force. Dynamic systems can be mechanical, electrical, thermal, hydraulic, pneumatic, or any combination thereof.  An electrical motor is a good example of a dynamic system in which electricity is used to drive the motor’s mechanical movement.  The operation of the motor is controlled by altering the electric current or voltage.  Another good example is a car’s suspension system, which is designed to curb abnormal vibrations while riding on a bumpy road.  In order to design a suspension system, you must analyze the mathematical equations of the physics of the suspension and its response (i.e. how effectivel…

4 votes
Saylor.org Free Closed [?] Physical Sciences International development Nutrition Taking derivatives

Engineering design is the process of creating solutions to satisfy certain requirements given all the constraints.   This course will focus on the decision-making process that affects various stages of design, including resource allocation, scheduling, facilities management, material procurement, inspection, and quality control.  You will be introduced to the basic theoretical framework and several practical tools you can use to support decision making in the future.  The first two units provide an overview of engineering design process and theories and methods for making decisions, including Analytic Hierarchy Process, Lean Six Sigma, and Quality Function Deployment.  In Unit 3, you will learn about the basic principles of computerized decision support systems.  Unit 4 discusses several advanced mathematical methods used for support decision making, including linear and dynamic programming, decision tree, and Bayesian inference.

3 votes
Saylor.org Free Closed [?] Physical Sciences International development Nutrition Taking derivatives

This course will ask you to apply the knowledge you have acquired over the course of the entire mechanical engineering curriculum.  It draws upon what you have learned in your courses in mechanics, CAD, materials and processing, thermal and fluid systems, and dynamics and control, just to name a few.  This course is equivalent to the capstone course or senior design project that you would need to complete as a senior in a mechanical engineering program in a traditional American university setting. This course begins in Unit 1 by introducing you to the stages of the design process.  We will then focus on tools and skill sets that are particularly important for succeeding in a design project, including design planning, teamwork skills, project management, and design reporting. Unit 2 covers important design principles and considerations.  You will learn about economic implications (you must keep cost in mind while designing!), the ethical, societal, and environmental impacts of design decisions, and pro…

28 votes
Khan Academy Free Closed [?] Physical Sciences Class2Go Instruction

Everything in the universe can be measured. Under Pressure. Earth's Tilt 1: The Reason for the Seasons. Earth's Tilt 2: Land of the Midnight Sun. 2D Equilibrium -- Balancing Games. Under Pressure. Earth's Tilt 1: The Reason for the Seasons. Earth's Tilt 2: Land of the Midnight Sun. 2D Equilibrium -- Balancing Games.

40 votes
Khan Academy Free Closed [?] Life Sciences Calculus I Class2Go Foreign Language Global Warming Italian Language and Literature Lancaster University

Watch fun, educational videos on all sorts of Physics questions. Bridge Design and Destruction! (part 1). Bridge Design (and Destruction!) Part 2. Shifts in Equilibrium. The Marangoni Effect: How to make a soap propelled boat!. The Invention of the Battery. The Forces on an Airplane. Bouncing Droplets: Superhydrophobic and Superhydrophilic Surfaces. A Crash Course on Indoor Flying Robots.

16 votes
Udemy Free Closed [?] Physical Sciences Beginner Calculus I Computer%2525252BScience.htm%2525253Fdatetype%2525253Dupcoming&.htm%25253Fcategoryid%25253D7.htm%3Fc Histology Navigation+SAP

This Stanford Continuing Studies course is the second of a six-quarter sequence of classes exploring the essential theor

3 votes
Saylor.org Free Closed [?] Physical Sciences Calculus I Foreign Language Italian Language and Literature Lancaster University Mechanisms of organic chemical reactions Navigation+SAP

Physics 101 is the first course in the Introduction to Physics sequence. In general, the quest of physics is to develop descriptions of the natural world that correspond closely to actual observations. Given this definition, the story behind everything in the universe, from rocks falling to stars shining, is one of physics. In principle, the events of the natural world represent no more than the interactions of the elementary particles that comprise the material universe. In practice, however, it turns out to be more complicated than that. As the system under study becomes more and more complex, it becomes less and less clear how the basic laws of physics account for the observations. Other branches of science, such as chemistry or biology, are needed.  In principle, biology is based on the laws of chemistry, and chemistry is based on the laws of physics, but our ability to understand something as complex as life in terms of the laws of physics is well beyond our present knowledge. Physics is, however, the…

3 votes
Saylor.org Free Closed [?] Physical Sciences Accessible Websites Calculus I Design.htm%25252525253Fdatetype%25252525253Dupcoming&.htm%252525253Fcategoryid%252525253D10.htm%2525 Nutrition Taking derivatives Undergraduate.htm%2525252525253Fstart%2525252525253D1400&limit%2525252525253D20.htm%25252525253Fsort

The physics of the universe appears to be dominated by the effects of four fundamental forces: gravity, electromagnetism, weak nuclear forces, and strong nuclear forces.  These forces control how matter, energy, space, and time interact to produce our physical world.  All other forces, such as the force you exert in standing up, are ultimately derived from these fundamental forces. We have direct daily experience with two of these forces: gravity and electromagnetism.  Consider, for example, the everyday sight of a person sitting on a chair.  The force holding the person on the chair is gravitational, and that gravitational force balances with material forces that “push up” to keep the individual in place.  These forces are the direct result of electromagnetic forces on the nanoscale.  On a larger stage, gravity holds the celestial bodies in their orbits, while we see the universe by the electromagnetic radiation (light, for example) with which it is filled.  The electromagnetic force also makes…

18 votes
Udemy Free Closed [?] Physical Sciences Calculus I Foreign Language Histology Italian Language and Literature Lancaster University Mechanisms of organic chemical reactions

Projectile motion, mechanics and electricity and magnetism.

31 votes
Khan Academy Free Closed [?] Life Sciences Calculus I Class2Go Foreign Language Italian Language and Literature Lancaster University Mechanisms of organic chemical reactions

Watch fun, educational videos on all sorts of Physics questions. Thomas Young's Double Slit Experiment. Newton's Prism Experiment. Bridge Design and Destruction! (part 1). Bridge Design (and Destruction!) Part 2. Shifts in Equilibrium. The Marangoni Effect: How to make a soap propelled boat!. The Invention of the Battery. The Forces on an Airplane. Bouncing Droplets: Superhydrophobic and Superhydrophilic Surfaces. A Crash Course on Indoor Flying Robots. Heat Transfer. Thomas Young's Double Slit Experiment. Newton's Prism Experiment. Bridge Design and Destruction! (part 1). Bridge Design (and Destruction!) Part 2. Shifts in Equilibrium. The Marangoni Effect: How to make a soap propelled boat!. The Invention of the Battery. The Forces on an Airplane. Bouncing Droplets: Superhydrophobic and Superhydrophilic Surfaces. A Crash Course on Indoor Flying Robots. Heat Transfer.

15 votes
ALISON Free Physical Sciences

Using vectors to study motion is a fundamental skill to have when studying physics. Vector quantities used to describe the physical world include displacement, velocity, acceleration, and force. In this free online physics course the standard way to represent vectors and their axes as well as unit vector notation are explained in a clear and step-by-step manner. Examples show how to work out the angle or distance necessary to get the desired displacement. Using two known variables you will learn how to work through the process of calculating the remaining value, such as time in air or horizontal displacement using a variety of techniques. This free online physics course will be of great interest to students who are studying physics, chemistry, engineering, mathematics, and to students who wish to pursue a career in any of the sciences or engineering fields, and even the sportsperson who wants to plan for a specific outcome when hitting a golf ball or batting a ball.<br />

10 votes
ALISON Free Physical Sciences

Gravity is the force that keeps us on the ground and understanding how gravity works is very important as it has a great influence on the upward and downward movement of objects. This free online course about gravity will explain Newton’s Second Law of Motion, the universal constant, which is used to work out the force of gravity throughout the universe. You will also learn what the effect of the earth's force of gravity, or little g as it is known, has on an object and why mass is not the same as weight. To fully understand gravity this course will take you step-by-step through the relevant formulas, showing you how to calculate velocity or distance based on time and then plot these changes so you will have a visual concept of what is happening. This course will be of great interest to students who are studying physics, chemistry, engineering, mathematics, and to students who wish to pursue a career in any of the sciences or engineering fields.<br />

Trusted paper writing service WriteMyPaper.Today will write the papers of any difficulty.