Online courses directory (417)

Sort by: Name, Rating, Price
Start time: Any, Upcoming, Recent started, New, Always Open
Price: Any, Free, Paid
Starts : 2006-09-01
11 votes
MIT OpenCourseWare (OCW) Free Engineering Infor Information environments Information Theory Introduction to Sociology Nutrition

Numerical methods for solving problems arising in heat and mass transfer, fluid mechanics, chemical reaction engineering, and molecular simulation. Topics: numerical linear algebra, solution of nonlinear algebraic equations and ordinary differential equations, solution of partial differential equations (e.g. Navier-Stokes), numerical methods in molecular simulation (dynamics, geometry optimization). All methods are presented within the context of chemical engineering problems. Familiarity with structured programming is assumed. The examples will use MATLAB®.

Acknowledgements

The instructor would like to thank Robert Ashcraft, Sandeep Sharma, David Weingeist, and Nikolay Zaborenko for their work in preparing materials for this course site.

Starts : 2014-09-15
97 votes
Coursera Free Life Sciences English BabsonX Brain stem Business Law Nutrition

This seven week course will explore nutrition concepts that take center stage in mainstream media outlets and become conversation topics among consumers interested in food choice as it relates to optimal health and physical performance.

Starts : 2001-02-01
10 votes
MIT OpenCourseWare (OCW) Free Life Sciences Infor Information control Information Theory Interest and debt Nutrition

Provides a comprehensive introduction to key issues and findings in object recognition in experimental, neural, computational, and applied domains. Emphasizes the problem of representation, exploring the issue of how 3-D objects should be encoded so as to efficiently recognize them from 2-D images. Second half focuses on face recognition, an ecologically important instance of the general object recognition problem. Describes experimental studies of human face recognition performance and recent attempts to mimic this ability in artificial computational systems.

Starts : 2014-05-26
No votes
Coursera Free Life Sciences English Aviation BabsonX Brain stem Business Administration Nutrition

This course will look at how intelligent and innovative use of the ocean can sustainably deliver the key resources necessary to help meet some of the great challenges faced by humanity.

116 votes
Khan Academy Free Closed [?] Life Sciences Adult & Continuing Education Class2Go

Topics covered in college organic chemistry course. Basic understanding of basic high school or college chemistry assumed. Representing Structures of Organic Molecules. Naming Simple Alkanes. Naming Alkanes with Alkyl Groups. Correction - 2-Propylheptane should never be the name!. Common and Systematic Naming-Iso, Sec and Tert Prefixes. Organic Chemistry Naming Examples 1. Organic Chemistry Naming Examples 2. Organic Chemistry Naming Examples 3. Organic Chemistry Naming Examples 4. Organic Chemistry Naming Examples 5. Naming Alkenes Examples. Naming Alkyl Halides. sp3 Hybridized Orbitals and Sigma Bonds. Pi bonds and sp2 Hybridized Orbitals. Newman Projections. Newman Projections 2. Chair and Boat Shapes for Cyclohexane. Double Newman Diagram for Methcyclohexane. Introduction to Chirality. Chiral Examples 1. Chiral Examples 2. Cahn-Ingold-Prelog System for Naming Enantiomers. R,S (Cahn-Ingold-Prelog) Naming System Example 2. Stereoisomers, Enantiomers, Diastereomers, Constitutional Isomers and Meso Compounds. Cis-Trans and E-Z Naming Scheme for Alkenes. Entgegen-Zusammen Naming Scheme for Alkenes Examples. Introduction to Reaction Mechanisms. Markovnikov's Rule and Carbocations. Addition of Water (Acid-Catalyzed) Mechanism. Polymerization of Alkenes with Acid. Sn2 Reactions. Sn1 Reactions. Steric Hindrance. Sn2 Stereochemistry. Solvent Effects on Sn1 and Sn2 Reactions. Nucleophilicity (Nucleophile Strength). Nucleophilicity vs. Basicity. E2 Reactions. E1 Reactions. Zaitsev's Rule. Comparing E2 E1 Sn2 Sn1 Reactions. E2 E1 Sn2 Sn1 Reactions Example 2. E2 E1 Sn2 Sn1 Reactions Example 3. Free Radical Reactions. Alcohols. Alcohol Properties. Resonance. Ether Naming and Introduction. Cyclic ethers and epoxide naming. Ring-opening Sn2 reaction of expoxides. Sn1 and Sn2 epoxide opening discussion. Aromatic Compounds and Huckel's Rule. Naming Benzene Derivatives Introduction. Electrophilic Aromatic Substitution. Bromination of Benzene. Amine Naming Introduction. Amine Naming 2. Amine as Nucleophile in Sn2 Reaction. Amine in Sn2 part 2. Sn1 Amine Reaction. Aldehyde Introduction. Ketone Naming. Friedel Crafts Acylation. Friedel Crafts Acylation Addendum. Keto Enol Tautomerization. Carboxlic Acid Introduction. Carboxylic Acid Naming. Fisher Esterification. Acid Chloride Formation. Amides, Anhydrides, Esters and Acyl Chlorides. Relative Stability of Amides Esters Anhydrides and Acyl Chlorides. Amide Formation from Acyl Chloride. Aldol Reaction.

48 votes
Khan Academy Free Closed [?] Life Sciences Adult & Continuing Education Business+Law Class2Go Cyberinfrastructure Measuring health disparity The Open University

alcohols, ethers, epoxides, thiols, sulfides. Alcohols. Alcohol Properties. alcohol nomenclature. physical properties of alcohols and preparation of alkoxides. preparation of alcohols using NaBH4. preparation of alcohols using LiAlH4. synthesis of alcohols using grignard reagents I. synthesis of alcohols using grignard reagents II. oxidation of alcohols I: mechanism and oxidation states. oxidation of alcohols II: examples. biological redox reactions. formation of nitrate esters. preparation of alkyl halides from alcohols. Ether Naming and Introduction. Ether nomenclature. Properties of ethers and crown ethers. williamson ether synthesis. acidic cleavage of ethers. Cyclic ethers and epoxide naming. nomenclature and preparation of epoxides. preparation of epoxides: stereochemistry. Ring-opening Sn2 reaction of expoxides. Sn1 and Sn2 epoxide opening discussion. ring-opening reactions of epoxides: strong nucleophiles. ring opening reactions of epoxides: acid-catalyzed. preparation of sulfides. Alcohols. Alcohol Properties. alcohol nomenclature. physical properties of alcohols and preparation of alkoxides. preparation of alcohols using NaBH4. preparation of alcohols using LiAlH4. synthesis of alcohols using grignard reagents I. synthesis of alcohols using grignard reagents II. oxidation of alcohols I: mechanism and oxidation states. oxidation of alcohols II: examples. biological redox reactions. formation of nitrate esters. preparation of alkyl halides from alcohols. Ether Naming and Introduction. Ether nomenclature. Properties of ethers and crown ethers. williamson ether synthesis. acidic cleavage of ethers. Cyclic ethers and epoxide naming. nomenclature and preparation of epoxides. preparation of epoxides: stereochemistry. Ring-opening Sn2 reaction of expoxides. Sn1 and Sn2 epoxide opening discussion. ring-opening reactions of epoxides: strong nucleophiles. ring opening reactions of epoxides: acid-catalyzed. preparation of sulfides.

42 votes
Khan Academy Free Closed [?] Life Sciences Adult & Continuing Education Class2Go Economics & Finance

nomenclature and reactions of aldehydes and ketones. Aldehyde Introduction. Ketone Naming. Keto Enol Tautomerization. Aldol Reaction. Aldehyde Introduction. Ketone Naming. Keto Enol Tautomerization. Aldol Reaction.

45 votes
Khan Academy Free Closed [?] Life Sciences Adult & Continuing Education Class2Go Mathematics

naming alkanes and cycloalkanes, conformations of alkanes and cycloalkanes, and free radical reactions. Representing Structures of Organic Molecules. Naming Simple Alkanes. Naming Alkanes with Alkyl Groups. Correction - 2-Propylheptane should never be the name!. Common and Systematic Naming-Iso, Sec and Tert Prefixes. Organic Chemistry Naming Examples 1. Organic Chemistry Naming Examples 2. Organic Chemistry Naming Examples 3. Organic Chemistry Naming Examples 4. Organic Chemistry Naming Examples 5. Newman Projections. Newman Projections 2. Chair and Boat Shapes for Cyclohexane. Double Newman Diagram for Methcyclohexane. alkane and cycloalkane nomenclature I. alkane and cycloalkane nomenclature II. alkane and cycloalkane nomenclature III. bicyclic compounds. naming cubane. conformations of ethane and propane. conformations of butane. conformations of cyclohexane I: chair and boat. conformations of cyclohexane II: monosubstituted. conformations of cyclohexane III: disubstituted. conformations of cyclohexane IV: trisubstituted. Free Radical Reactions. Representing Structures of Organic Molecules. Naming Simple Alkanes. Naming Alkanes with Alkyl Groups. Correction - 2-Propylheptane should never be the name!. Common and Systematic Naming-Iso, Sec and Tert Prefixes. Organic Chemistry Naming Examples 1. Organic Chemistry Naming Examples 2. Organic Chemistry Naming Examples 3. Organic Chemistry Naming Examples 4. Organic Chemistry Naming Examples 5. Newman Projections. Newman Projections 2. Chair and Boat Shapes for Cyclohexane. Double Newman Diagram for Methcyclohexane. alkane and cycloalkane nomenclature I. alkane and cycloalkane nomenclature II. alkane and cycloalkane nomenclature III. bicyclic compounds. naming cubane. conformations of ethane and propane. conformations of butane. conformations of cyclohexane I: chair and boat. conformations of cyclohexane II: monosubstituted. conformations of cyclohexane III: disubstituted. conformations of cyclohexane IV: trisubstituted. Free Radical Reactions.

46 votes
Khan Academy Free Closed [?] Life Sciences Adult & Continuing Education Class2Go Digital rights management

naming alkenes and alkynes, reactions of alkenes and alkynes, synthesis. Naming Alkenes Examples. Cis-Trans and E-Z Naming Scheme for Alkenes. Entgegen-Zusammen Naming Scheme for Alkenes Examples. Introduction to Reaction Mechanisms. Markovnikov's Rule and Carbocations. Addition of Water (Acid-Catalyzed) Mechanism. Polymerization of Alkenes with Acid. Alkene intro and stability. Alkene nomenclature. cis/trans and the E/Z system. hydrogenation. hydrohalogenation. hydration. halogenation. halohydrin formation. hydroboration-oxidation. epoxide formation and anti dihydroxylation. syn dihydroxylation. Ozonolysis. alkyne nomenclature. alkyne acidity and alkylation. preparation of alkynes. reduction of alkynes. hydrohalogenation of alkynes. hydration of alkynes. hydroboration-oxidation of alkynes. halogenation and ozonolysis of alkynes. synthesis using alkynes. Naming Alkenes Examples. Cis-Trans and E-Z Naming Scheme for Alkenes. Entgegen-Zusammen Naming Scheme for Alkenes Examples. Introduction to Reaction Mechanisms. Markovnikov's Rule and Carbocations. Addition of Water (Acid-Catalyzed) Mechanism. Polymerization of Alkenes with Acid. Alkene intro and stability. Alkene nomenclature. cis/trans and the E/Z system. hydrogenation. hydrohalogenation. hydration. halogenation. halohydrin formation. hydroboration-oxidation. epoxide formation and anti dihydroxylation. syn dihydroxylation. Ozonolysis. alkyne nomenclature. alkyne acidity and alkylation. preparation of alkynes. reduction of alkynes. hydrohalogenation of alkynes. hydration of alkynes. hydroboration-oxidation of alkynes. halogenation and ozonolysis of alkynes. synthesis using alkynes.

58 votes
Khan Academy Free Closed [?] Life Sciences Adult & Continuing Education Class2Go Environmental Studies

nomenclature and reactions of amines. Amine Naming Introduction. Amine Naming 2. Amine as Nucleophile in Sn2 Reaction. Amine in Sn2 part 2. Sn1 Amine Reaction. Amine Naming Introduction. Amine Naming 2. Amine as Nucleophile in Sn2 Reaction. Amine in Sn2 part 2. Sn1 Amine Reaction.

50 votes
Khan Academy Free Closed [?] Life Sciences Adult & Continuing Education Class2Go Entertainment+Technology

aromatic compounds, naming derivatives of benzene, electrophilic aromatic substitution reactions. Naming Benzene Derivatives Introduction. naming benzene derivatives. Aromatic Compounds and Huckel's Rule. Aromatic Stability I. aromatic stability II. aromatic stability III. aromatic stability IV. aromatic stability V. Aromatic Heterocycles I. Aromatic Heterocycles II. Resonance. Electrophilic Aromatic Substitution. Bromination of Benzene. Friedel Crafts Acylation. Friedel Crafts Acylation Addendum. Electrophilic Aromatic Substitution Mechanism. Halogenation. Nitration. Sulfonation. Friedel-Crafts Alkylation. Friedel-Crafts Acylation. Ortho-Para Directors I. Ortho-Para Directors II. Ortho-Para Directors III. Meta Directors I. Meta Directors II. Multiple Substituents. Birch Reduction I. Birch Reduction II. Reactions at the Benzylic Position. Synthesis of Substituted Benzene Rings I. Synthesis of Substituted Benzene Rings II. Nucleophilic Aromatic Substitution I. Nucleophilic Aromatic Substitution II. Naming Benzene Derivatives Introduction. naming benzene derivatives. Aromatic Compounds and Huckel's Rule. Aromatic Stability I. aromatic stability II. aromatic stability III. aromatic stability IV. aromatic stability V. Aromatic Heterocycles I. Aromatic Heterocycles II. Resonance. Electrophilic Aromatic Substitution. Bromination of Benzene. Friedel Crafts Acylation. Friedel Crafts Acylation Addendum. Electrophilic Aromatic Substitution Mechanism. Halogenation. Nitration. Sulfonation. Friedel-Crafts Alkylation. Friedel-Crafts Acylation. Ortho-Para Directors I. Ortho-Para Directors II. Ortho-Para Directors III. Meta Directors I. Meta Directors II. Multiple Substituents. Birch Reduction I. Birch Reduction II. Reactions at the Benzylic Position. Synthesis of Substituted Benzene Rings I. Synthesis of Substituted Benzene Rings II. Nucleophilic Aromatic Substitution I. Nucleophilic Aromatic Substitution II.

47 votes
Khan Academy Free Closed [?] Life Sciences Adult & Continuing Education Class2Go Elasticity

naming carboxylic acids, formation of carboxylic acid derivatives. Carboxlic Acid Introduction. Carboxylic Acid Naming. Fisher Esterification. Acid Chloride Formation. Amides, Anhydrides, Esters and Acyl Chlorides. Relative Stability of Amides Esters Anhydrides and Acyl Chlorides. Amide Formation from Acyl Chloride. Carboxlic Acid Introduction. Carboxylic Acid Naming. Fisher Esterification. Acid Chloride Formation. Amides, Anhydrides, Esters and Acyl Chlorides. Relative Stability of Amides Esters Anhydrides and Acyl Chlorides. Amide Formation from Acyl Chloride.

63 votes
Khan Academy Free Closed [?] Life Sciences Adult & Continuing Education Class2Go Department of Chemistry and Biochemistry at the University of Oklahoma Department of Philosophy at the University of Oklahoma Digital libraries

conjugation, conjugated dienes, addition reactions of conjugated dienes, diels-alder reaction, MO theory, color. addition reaction of conjugated dienes I: mechanism. addition reaction of conjugated dienes II: example. addition reaction of conjugated dienes III: control. diels-alder I: mechanism. diels-alder II: endo vs exo. diels-alder III: stereochemistry of dienophile. diels-alder IV: stereochemistry of diene. diels-alder V: regiochemistry. diels-alder VI: more regiochemistry. diels-alder VII: intramolecular. intro to molecular orbital (MO) theory. MO theory for butadiene. MO theory for Diels-Alder. intro to color theory. conjugation and color. color in organic molecules. addition reaction of conjugated dienes I: mechanism. addition reaction of conjugated dienes II: example. addition reaction of conjugated dienes III: control. diels-alder I: mechanism. diels-alder II: endo vs exo. diels-alder III: stereochemistry of dienophile. diels-alder IV: stereochemistry of diene. diels-alder V: regiochemistry. diels-alder VI: more regiochemistry. diels-alder VII: intramolecular. intro to molecular orbital (MO) theory. MO theory for butadiene. MO theory for Diels-Alder. intro to color theory. conjugation and color. color in organic molecules.

53 votes
Khan Academy Free Closed [?] Life Sciences Adult & Continuing Education Class2Go Classroom case studies

A review of hybrid orbitals, dot structures, electronegativity, and polarity. sp3 Hybridized Orbitals and Sigma Bonds. Pi bonds and sp2 Hybridized Orbitals. dot structures I: single bonds. dot structures II: multiple bonds. sp3 hybrid orbitals. tetrahedral bond angle proof. sp2 hybrid orbitals. sp hybrid orbitals. more hybridization. electronegativity. electronegativity and intermolecular forces. sp3 Hybridized Orbitals and Sigma Bonds. Pi bonds and sp2 Hybridized Orbitals. dot structures I: single bonds. dot structures II: multiple bonds. sp3 hybrid orbitals. tetrahedral bond angle proof. sp2 hybrid orbitals. sp hybrid orbitals. more hybridization. electronegativity. electronegativity and intermolecular forces.

42 votes
Khan Academy Free Closed [?] Life Sciences Adult & Continuing Education Class2Go Teacher chats

bond-line structures, functional groups, formal charges, resonance structures, oxidation and reduction, acid/base chemistry. bond-line structures. 3-D bond-line structures. structural (constitutional) isomers. functional groups I. functional groups II. formal charge I. formal charge II. resonance structures I. resonance structures II. resonance structures III. oxidation states I. oxidation states II. Acid/Base Definitions. Ka and pKa Derivation. Stabilization of Conjugate Base I. Stabilization of Conjugate Base II. Stabilization of Conjugate Base III. Stabilization of Conjugate Base IV. bond-line structures. 3-D bond-line structures. structural (constitutional) isomers. functional groups I. functional groups II. formal charge I. formal charge II. resonance structures I. resonance structures II. resonance structures III. oxidation states I. oxidation states II. Acid/Base Definitions. Ka and pKa Derivation. Stabilization of Conjugate Base I. Stabilization of Conjugate Base II. Stabilization of Conjugate Base III. Stabilization of Conjugate Base IV.

64 votes
Khan Academy Free Closed [?] Life Sciences Adult & Continuing Education Class2Go ConocoPhillips School of Geology and Geophysics

chirality, stereoisomers, assigning absolute configuration using the R,S system, optical activity, diastereomers, meso compounds, fischer projections. Introduction to Chirality. Chiral Examples 1. Chiral Examples 2. Cahn-Ingold-Prelog System for Naming Enantiomers. R,S (Cahn-Ingold-Prelog) Naming System Example 2. chirality centers and stereoisomers. R,S system for determining absolute configuration. R,S system for cyclic compounds. optical activity I: theory. optical activity II: calculations. Stereoisomers, Enantiomers, Diastereomers, Constitutional Isomers and Meso Compounds. diastereomers. meso compounds. fischer projections. Introduction to Chirality. Chiral Examples 1. Chiral Examples 2. Cahn-Ingold-Prelog System for Naming Enantiomers. R,S (Cahn-Ingold-Prelog) Naming System Example 2. chirality centers and stereoisomers. R,S system for determining absolute configuration. R,S system for cyclic compounds. optical activity I: theory. optical activity II: calculations. Stereoisomers, Enantiomers, Diastereomers, Constitutional Isomers and Meso Compounds. diastereomers. meso compounds. fischer projections.

54 votes
Khan Academy Free Closed [?] Life Sciences Adult & Continuing Education Class2Go Copyright

SN1, SN2, E1, E2, nucleophiles, nucleophilicity, basicity. Naming Alkyl Halides. Sn2 Reactions. Sn1 Reactions. Steric hindrance. Sn2 Stereochemistry. Solvent Effects on Sn1 and Sn2 Reactions. Nucleophilicity (Nucleophile Strength). Nucleophilicity vs. Basicity. E2 Reactions. E1 Reactions. Zaitsev's Rule. Comparing E2 E1 Sn2 Sn1 Reactions. E2 E1 Sn2 Sn1 Reactions Example 2. E2 E1 Sn2 Sn1 Reactions Example 3. nucleophile/electrophile and The Schwartz Rules. alkyl halide nomenclature. SN1 reaction: mechanism. SN1 reaction: stereochemistry. SN2 mechanism and stereochemistry. SN1 vs SN2: solvent effects. SN1 vs SN2: summary. E1 Elimination: mechanism. E1 Elimination: regioselectivity and stereoselectivity. carbocations and rearrangements. E1 Elimination: carbocation rearrangements. E2 Elimination: mechanism. E2 Elimination: regioselectivity. E2 Elimination: stereoselectivity. E2 Elimination: stereospecificity. E2 Elimination: substituted cyclohexanes. nucleophilicity and basicity. SN1 SN2 E1 E2 reactions: primary and tertiary alkyl halides. SN1 SN2 E1 E2 reactions: secondary alkyl halides. Naming Alkyl Halides. Sn2 Reactions. Sn1 Reactions. Steric hindrance. Sn2 Stereochemistry. Solvent Effects on Sn1 and Sn2 Reactions. Nucleophilicity (Nucleophile Strength). Nucleophilicity vs. Basicity. E2 Reactions. E1 Reactions. Zaitsev's Rule. Comparing E2 E1 Sn2 Sn1 Reactions. E2 E1 Sn2 Sn1 Reactions Example 2. E2 E1 Sn2 Sn1 Reactions Example 3. nucleophile/electrophile and The Schwartz Rules. alkyl halide nomenclature. SN1 reaction: mechanism. SN1 reaction: stereochemistry. SN2 mechanism and stereochemistry. SN1 vs SN2: solvent effects. SN1 vs SN2: summary. E1 Elimination: mechanism. E1 Elimination: regioselectivity and stereoselectivity. carbocations and rearrangements. E1 Elimination: carbocation rearrangements. E2 Elimination: mechanism. E2 Elimination: regioselectivity. E2 Elimination: stereoselectivity. E2 Elimination: stereospecificity. E2 Elimination: substituted cyclohexanes. nucleophilicity and basicity. SN1 SN2 E1 E2 reactions: primary and tertiary alkyl halides. SN1 SN2 E1 E2 reactions: secondary alkyl halides.

Starts : 2016-01-18
No votes
Coursera Free Closed [?] Life Sciences English Aviation BabsonX Business Administration Nutrition

Develop a greater appreciation for how the air, water, land, and life formed and have interacted over the last 4.5 billion years.

Starts : 2006-06-01
13 votes
MIT OpenCourseWare (OCW) Free Life Sciences Infor Information control Information Theory Interest and debt Nutrition

Parkinson's disease (PD) is a chronic, progressive, degenerative disease of the brain that produces movement disorders and deficits in executive functions, working memory, visuospatial functions, and internal control of attention. It is named after James Parkinson (1755-1824), the English neurologist who described the first case.

This six-week summer workshop explored different aspects of PD, including clinical characteristics, structural neuroimaging, neuropathology, genetics, and cognitive function (mental status, cognitive control processes, working memory, and long-term declarative memory).  The workshop did not take up the topics of motor control, nondeclarative memory, or treatment. 

Starts : 2004-09-01
9 votes
MIT OpenCourseWare (OCW) Free Life Sciences Infor Information environments Information Theory Interest and debt Nutrition

The applications of pattern recognition techniques to problems of machine vision is the main focus for this course. Topics covered include, an overview of problems of machine vision and pattern classification, image formation and processing, feature extraction from images, biological object recognition, bayesian decision theory, and clustering.

Trusted paper writing service WriteMyPaper.Today will write the papers of any difficulty.