Courses tagged with "Information Theory" (113)

Sort by: Name, Rating, Price
Start time: Any, Upcoming, Recent started, New, Always Open
Price: Any, Free, Paid
Starts : 2006-02-01
19 votes
MIT OpenCourseWare (OCW) Free Mathematics Calculus I Infor Information environments Information Theory Nutrition

8.962 is MIT's graduate course in general relativity, which covers the basic principles of Einstein's general theory of relativity, differential geometry, experimental tests of general relativity, black holes, and cosmology.

Starts : 2010-02-01
9 votes
MIT OpenCourseWare (OCW) Free Physical Sciences Diencephalon Infor Information environments Information Theory Nutrition

This course covers the following topics: X-ray diffraction: symmetry, space groups, geometry of diffraction, structure factors, phase problem, direct methods, Patterson methods, electron density maps, structure refinement, how to grow good crystals, powder methods, limits of X-ray diffraction methods, and structure data bases.

Starts : 2003-09-01
11 votes
MIT OpenCourseWare (OCW) Free Physical Sciences Infor Information environments Information Theory Interns Nutrition

This course describes the processes by which mass, momentum, and energy are transported in plasmas, with special reference to magnetic confinement fusion applications.

The Fokker-Planck collision operator and its limiting forms, as well as collisional relaxation and equilibrium, are considered in detail. Special applications include a Lorentz gas, Brownian motion, alpha particles, and runaway electrons.

The Braginskii formulation of classical collisional transport in general geometry based on the Fokker-Planck equation is presented.

Neoclassical transport in tokamaks, which is sensitive to the details of the magnetic geometry, is considered in the high (Pfirsch-Schluter), low (banana) and intermediate (plateau) regimes of collisionality.

Starts : 2008-09-01
8 votes
MIT OpenCourseWare (OCW) Free Physical Sciences Infor Information environments Information Theory Nutrition Vectors

This course covers the fundamentals of astrodynamics, focusing on the two-body orbital initial-value and boundary-value problems with applications to space vehicle navigation and guidance for lunar and planetary missions, including both powered flight and midcourse maneuvers. Other topics include celestial mechanics, Kepler's problem, Lambert's problem, orbit determination, multi-body methods, mission planning, and recursive algorithms for space navigation. Selected applications from the Apollo, Space Shuttle, and Mars exploration programs are also discussed.

Starts : 2008-09-01
16 votes
MIT OpenCourseWare (OCW) Free Closed [?] Life Sciences Infor Information environments Information Theory JaverianaX Nutrition Reading assessment reading comprehension

This course introduces students to climate studies, including beginnings of the solar system, time scales, and climate in human history. It is offered to both undergraduate and graduate students with different requirements.

Starts : 2008-02-01
9 votes
MIT OpenCourseWare (OCW) Free Life Sciences Infor Information environments Information Theory JaverianaX Nutrition Reading assessment reading comprehension

This course begins with a study of the role of dynamics in the general physics of the atmosphere, the consideration of the differences between modeling and approximation, and the observed large-scale phenomenology of the atmosphere. Only then are the basic equations derived in rigorous manner. The equations are then applied to important problems and methodologies in meteorology and climate, with discussions of the history of the topics where appropriate. Problems include the Hadley circulation and its role in the general circulation, atmospheric waves including gravity and Rossby waves and their interaction with the mean flow, with specific applications to the stratospheric quasi-biennial oscillation, tides, the super-rotation of Venus' atmosphere, the generation of atmospheric turbulence, and stationary waves among other problems. The quasi-geostrophic approximation is derived, and the resulting equations are used to examine the hydrodynamic stability of the circulation with applications ranging from convective adjustment to climate.

Starts : 2004-02-01
16 votes
MIT OpenCourseWare (OCW) Free Physical Sciences Calculus I Infor Information environments Information Theory Nutrition

Electromagnetic Theory covers the basic principles of electromagnetism: experimental basis, electrostatics, magnetic fields of steady currents, motional e.m.f. and electromagnetic induction, Maxwell's equations, propagation and radiation of electromagnetic waves, electric and magnetic properties of matter, and conservation laws. This is a graduate level subject which uses appropriate mathematics but whose emphasis is on physical phenomena and principles.

Starts : 2013-09-01
19 votes
MIT OpenCourseWare (OCW) Free Engineering Infor Information environments Information Theory International development Nutrition

This course is a survey of principal concepts and methods of fluid dynamics. Topics include mass conservation, momentum, and energy equations for continua; Navier-Stokes equation for viscous flows; similarity and dimensional analysis; lubrication theory; boundary layers and separation; circulation and vorticity theorems; potential flow; introduction to turbulence; lift and drag; surface tension and surface tension driven flows.

Starts : 2015-09-01
12 votes
MIT OpenCourseWare (OCW) Free Physical Sciences Infor Information environments Information Theory Interns Nutrition

Engineering principles of nuclear reactors, emphasizing power reactors. Topics include power plant thermodynamics, reactor heat generation and removal (single-phase as well as two-phase coolant flow and heat transfer), structural mechanics, and engineering considerations in reactor design.

Starts : 2003-02-01
16 votes
MIT OpenCourseWare (OCW) Free Computer Sciences Before 1300: Ancient and Medieval History Infor Information environments Information Theory Nutrition

In 6.635, topics covered include: special relativity, electrodynamics of moving media, waves in dispersive media, microstrip integrated circuits, quantum optics, remote sensing, radiative transfer theory, scattering by rough surfaces, effective permittivities, random media, Green's functions for planarly layered media, integral equations in electromagnetics, method of moments, time domain method of moments, EM waves in periodic structures: photonic crystals and negative refraction.

Starts : 1997-01-01
12 votes
MIT OpenCourseWare (OCW) Free Physical Sciences Infor Information environments Information Theory Interns Nutrition

Hands-on introduction to NMR presenting background in classical theory and instrumentation. Each lecture is followed by lab experiments to demonstrate ideas presented during the lecture and to familiarize students with state-of-the-art NMR instrumentation. Experiments cover topics ranging from spin dynamics to spectroscopy, and include imaging.

Starts : 2006-09-01
16 votes
MIT OpenCourseWare (OCW) Free Physical Sciences Infor Information environments Information Theory Interns Nutrition

This course explores elements of nuclear physics for engineering students. It covers basic properties of the nucleus and nuclear radiations; quantum mechanical calculations of deuteron bound-state wave function and energy; n-p scattering cross section; transition probability per unit time and barrier transmission probability. It also covers binding energy and nuclear stability; interactions of charged particles, neutrons, and gamma rays with matter; radioactive decays; and energetics and general cross section behavior in nuclear reactions.

Starts : 2006-09-01
15 votes
MIT OpenCourseWare (OCW) Free Physical Sciences Infor Information control Information Theory Interns Nutrition

This course has been designed as a seminar to give students an understanding of how scientists with medical or scientific degrees conduct research in both hospital and academic settings. There will be interactive discussions with research clinicians and scientists about the career opportunities and research challenges in the biomedical field, which an MIT student might prepare for by obtaining an MD, PhD, or combined degrees. The seminar will be held in a case presentation format, with topics chosen from the radiological sciences, including current research in magnetic resonance imaging, positron emission tomography and other nuclear imaging techniques, and advances in radiation therapy. With the lectures as background, we will also examine alternative and related options such as biomedical engineering, medical physics, and medical engineering. We'll use as examples and points of comparisons the curriculum paths available through MIT's Department of Nuclear Science and Engineering. In past years we have given very modest assignments such as readings in advance of or after a seminar, and a short term project.

Starts : 2005-09-01
14 votes
MIT OpenCourseWare (OCW) Free Physical Sciences Infor Information environments Information Theory Interns Nutrition

This course is a graduate level subject on electromagnetic theory with particular emphasis on basics and applications to Nuclear Science and Engineering. The basic topics covered include electrostatics, magnetostatics, and electromagnetic radiation. The applications include transmission lines, waveguides, antennas, scattering, shielding, charged particle collisions, Bremsstrahlung radiation, and Cerenkov radiation.

Acknowledgments

Professor Freidberg would like to acknowledge the immense contributions made to this course by its previous instructors, Ian Hutchinson and Ron Parker.

Starts : 2010-09-01
17 votes
MIT OpenCourseWare (OCW) Free Physical Sciences Infor Information control Information Theory Interns Nutrition

In this course, students explore the engineering design of nuclear power plants using the basic principles of reactor physics, thermodynamics, fluid flow and heat transfer. Topics include reactor designs, thermal analysis of nuclear fuel, reactor coolant flow and heat transfer, power conversion cycles, nuclear safety, and reactor dynamic behavior.

Starts : 2009-09-01
14 votes
MIT OpenCourseWare (OCW) Free Physical Sciences Infor Information control Information Theory Interns Nutrition

This course introduces fundamental properties of the neutron. It covers reactions induced by neutrons, nuclear fission, slowing down of neutrons in infinite media, diffusion theory, the few-group approximation, point kinetics, and fission-product poisoning. It emphasizes the nuclear physics bases of reactor design and its relationship to reactor engineering problems.

Starts : 2002-09-01
8 votes
MIT OpenCourseWare (OCW) Free Physical Sciences Infor Information control Information Theory Interns Nutrition

An introduction to the principles of tomographic imaging and its applications. It includes a series of lectures with a parallel set of recitations that provide demonstrations of basic principles. Both ionizing and non-ionizing radiation are covered, including x-ray, PET, MRI, and ultrasound. Emphasis on the physics and engineering of image formation.

Starts : 2006-09-01
11 votes
MIT OpenCourseWare (OCW) Free Physical Sciences Infor Information environments Information Theory Interns Nutrition

This course integrates studies of engineering sciences, reactor physics and safety assessment into nuclear power plant design. Topics include materials issues in plant design and operations, aspects of thermal design, fuel depletion and fission-product poisoning, and temperature effects on reactivity, safety considerations in regulations and operations, such as the evolution of the regulatory process, the concept of defense in depth, General Design Criteria, accident analysis, probabilistic risk assessment, and risk-informed regulations.

Starts : 2012-09-01
19 votes
MIT OpenCourseWare (OCW) Free Physical Sciences Infor Information environments Information Theory Interns Nutrition

This subject introduces the key concepts and formalism of quantum mechanics and their relevance to topics in current research and to practical applications. Starting from the foundation of quantum mechanics and its applications in simple discrete systems, it develops the basic principles of interaction of electromagnetic radiation with matter.

Topics covered are composite systems and entanglement, open system dynamics and decoherence, quantum theory of radiation, time-dependent perturbation theory, scattering and cross sections. Examples are drawn from active research topics and applications, such as quantum information processing, coherent control of radiation-matter interactions, neutron interferometry and magnetic resonance.

Starts : 2012-02-01
16 votes
MIT OpenCourseWare (OCW) Free Physical Sciences Infor Information control Information Theory Interns Nutrition

This class covers basic concepts of nuclear physics with emphasis on nuclear structure and interactions of radiation with matter. Topics include elementary quantum theory; nuclear forces; shell structure of the nucleus; alpha, beta and gamma radioactive decays; interactions of nuclear radiations (charged particles, gammas, and neutrons) with matter; nuclear reactions; fission and fusion.

Trusted paper writing service WriteMyPaper.Today will write the papers of any difficulty.