Online courses directory (113)

Sort by: Name, Rating, Price
Start time: Any, Upcoming, Recent started, New, Always Open
Price: Any, Free, Paid
Starts : 2003-02-01
8 votes
MIT OpenCourseWare (OCW) Free Physical Sciences Infor Information environments Information Theory Nutrition Vectors

A presentation of the fundamentals of modern numerical techniques for a wide range of linear and nonlinear elliptic, parabolic and hyperbolic partial differential equations and integral equations central to a wide variety of applications in science, engineering, and other fields. Topics include: Mathematical Formulations; Finite Difference and Finite Volume Discretizations; Finite Element Discretizations; Boundary Element Discretizations; Direct and Iterative Solution Methods.

This course was also taught as part of the Singapore-MIT Alliance (SMA) programme as course number SMA 5212 (Numerical Methods for Partial Differential Equations).

Starts : 2010-09-01
18 votes
MIT OpenCourseWare (OCW) Free Computer Sciences Infor Information control Information Theory Nutrition Vectors

This course surveys a variety of reasoning, optimization and decision making methodologies for creating highly autonomous systems and decision support aids. The focus is on principles, algorithms, and their application, taken from the disciplines of artificial intelligence and operations research.

Reasoning paradigms include logic and deduction, heuristic and constraint-based search, model-based reasoning, planning and execution, and machine learning. Optimization paradigms include linear programming, integer programming, and dynamic programming. Decision-making paradigms include decision theoretic planning, and Markov decision processes.

Starts : 2011-02-01
18 votes
MIT OpenCourseWare (OCW) Free Physical Sciences Infor Information control Information Theory Nutrition Vectors

This course provides an introduction to the transportation industry's major technical challenges and considerations. For upper level undergraduates interested in learning about the transportation field in a broad but quantitative manner. Topics include road vehicle engineering, internal combustion engines, batteries and motors, electric and hybrid powertrains, urban and high speed rail transportation, water vessels, aircraft types and aerodynamics, radar, navigation, GPS, GIS. Students will complete a project on a subject of their choosing.

Starts : 1998-06-01
18 votes
MIT OpenCourseWare (OCW) Free Physical Sciences Infor Information environments Information Theory Nutrition Vectors

This course was created for the "product development" track of MIT's System Design and Management Program (SDM) in conjunction with the Center for Innovation in Product Development.  After taking this course, a student should be able to:

  • Formulate measures of performance of a system or quality characteristics. These quality characteristics are to be made robust to noise affecting the system.
  • Sythesize and select design concepts for robustness.
  • Identify noise factors whose variation may affect the quality characteristics.
  • Estimate the robustness of any given design (experimentally and analytically).
  • Formulate and implement methods to reduce the effects of noise (parameter design, active control, adjustment).
  • Select rational tolerances for a design.
  • Explain the role of robust design techniques within the wider context of the product development process.
  • Lead product development activities that include robust design techniques.

Related Content

Starts : 2012-02-01
8 votes
MIT OpenCourseWare (OCW) Free Physical Sciences Infor Information environments Information Theory Nutrition Vectors

This course introduces sensory systems and multi-sensory fusion using the vestibular and spatial orientation systems as a model. Topics range from end organ dynamics to neural responses, to sensory integration, to behavior, and adaptation, with particular application to balance, posture and locomotion under normal gravity and space conditions. Depending upon the background and interests of the students, advanced term project topics might include motion sickness, astronaut adaptation, artificial gravity, lunar surface locomotion, vestibulo-cardiovascular responses, vestibular neural prostheses, or other topics of interest.

Starts : 2005-09-01
13 votes
MIT OpenCourseWare (OCW) Free Computer Sciences Infor Information environments Information Theory Nutrition Vectors

This is a reading and discussion subject on issues in the engineering of software systems and software development project design. It includes the present state of software engineering, what has been tried in the past, what worked, what did not, and why. Topics may differ in each offering, but will be chosen from: the software process and lifecycle; requirements and specifications; design principles; testing, formal analysis, and reviews; quality management and assessment; product and process metrics; COTS and reuse; evolution and maintenance; team organization and people management; and software engineering aspects of programming languages.

Starts : 2003-02-01
16 votes
MIT OpenCourseWare (OCW) Free Physical Sciences Infor Information environments Information Theory Nutrition Vectors

The seminar explores current issues in space policy as well as the historical roots for the issues. Emphasis on critical policy discussion combined with serious technical analysis. The range of issues covers national security space policy, civil space policy, as well as commercial space policy. Issues explored include: the GPS dilemma, the International Space Station choices, commercial launch from foreign countries, and the fate of satellite-based cellular systems.

Starts : 2015-02-01
14 votes
MIT OpenCourseWare (OCW) Free Physical Sciences Infor Information environments Information Theory Nutrition Vectors

This course covers the fundamentals of rocket propulsion and discusses advanced concepts in space propulsion ranging from chemical to electrical engines. Topics include advanced mission analysis, physics and engineering of microthrusters, solid propellant rockets, electrothermal, electrostatic, and electromagnetic schemes for accelerating propellants. Additionally, satellite power systems and their relation to propulsion systems are discussed. The course includes laboratory work emphasizing the design and characterization of electric propulsion engines.

Starts : 2004-09-01
15 votes
MIT OpenCourseWare (OCW) Free Physical Sciences Infor Information environments Information Theory Nutrition Vectors

Space System Architecture and Design incorporates lectures, readings and discussion on topics in the architecting of space systems. The class reviews existing space system architectures and the classical methods of designing them. Sessions focus on multi-attribute utility theory as a new design paradigm for space systems, when combined with integrated concurrent engineering and efficient searches of large architectural tradespaces. Designing for flexibility and uncertainty is considered, as are policy and product development issues.

Starts : 2002-02-01
10 votes
MIT OpenCourseWare (OCW) Free Physical Sciences Infor Information control Information Theory Nutrition Vectors

Space Systems Engineering (16.83X) is the astronautical capstone course option in the Department of Aeronautics and Astronautics.  Between Spring 2002 and Spring 2003, the course was offered in a 3-semester format, using a Conceive, Design, Implement and Operate (C-D-I-O) teaching model. 16.83X is shorthand for the three course numbers: 16.83, 16.831, and 16.832. The first semester (16.83) is the Conceive-Design phase of the project, which results in a detailed system design, but precedes assembly.  The second semester (16.831) is the Implement phase, and involves building the students' system.  The final semester (16.832) is the Operate phase, in which the system is tested and readied to perform in its intended environment.

This year's project objective was to demonstrate the feasibility of an electromagnetically controlled array of formation flying satellites.  The project, "EMFFORCE", was an extension of the first C-D-I-O course project, "SPHERES", which ran from Spring 1999 through Spring 2000, and demonstrated satellite formation flying using gas thrusters for station-keeping.  The whole class works on the same project, but divides into smaller subsystem teams, such as power, metrology, and structures, to handle design details.

Starts : 2007-02-01
8 votes
MIT OpenCourseWare (OCW) Free Physical Sciences Infor Information environments Information Theory Nutrition Vectors

In 16.89 / ESD.352 the students will first be asked to understand the key challenges in designing ground and space telescopes, the stakeholder structure and value flows, and the particular pros and cons of the proposed project. The first half of the class will concentrate on performing a thorough architectural analysis of the key astrophysical, engineering, human, budgetary and broader policy issues that are involved in this decision. This will require the students to carry out a qualitative and quantitative conceptual study during the first half of the semester and recommend a small set of promising architectures for further study at the Preliminary Design Review (PDR).

Both lunar surface telescopes as well as orbital locations should be considered.

The second half of the class will then pick 1-2 of the top-rated architectures for a lunar telescope facility and develop the concept in more detail and present the detailed design at the Critical Design Review (CDR). This should not only sketch out the science program, telescope architecture and design, but also the stakeholder relationships, a rough estimate of budget and timeline, and also clarify the role that human explorers could or should play during both deployment and servicing/operations of such a facility (if any).

Starts : 2007-02-01
9 votes
MIT OpenCourseWare (OCW) Free Physical Sciences Infor Information environments Information Theory Nutrition Vectors

In 16.89 / ESD.352 the students will first be asked to understand the key challenges in designing ground and space telescopes, the stakeholder structure and value flows, and the particular pros and cons of the proposed project. The first half of the class will concentrate on performing a thorough architectural analysis of the key astrophysical, engineering, human, budgetary and broader policy issues that are involved in this decision. This will require the students to carry out a qualitative and quantitative conceptual study during the first half of the semester and recommend a small set of promising architectures for further study at the Preliminary Design Review (PDR).

Both lunar surface telescopes as well as orbital locations should be considered.

The second half of the class will then pick 1-2 of the top-rated architectures for a lunar telescope facility and develop the concept in more detail and present the detailed design at the Critical Design Review (CDR). This should not only sketch out the science program, telescope architecture and design, but also the stakeholder relationships, a rough estimate of budget and timeline, and also clarify the role that human explorers could or should play during both deployment and servicing/operations of such a facility (if any).

Starts : 2004-09-01
11 votes
MIT OpenCourseWare (OCW) Free Physical Sciences Infor Information environments Information Theory Nutrition Vectors

The major themes of this course are estimation and control of dynamic systems. Preliminary topics begin with reviews of probability and random variables. Next, classical and state-space descriptions of random processes and their propagation through linear systems are introduced, followed by frequency domain design of filters and compensators. From there, the Kalman filter is employed to estimate the states of dynamic systems. Concluding topics include conditions for stability of the filter equations.

Starts : 2002-09-01
10 votes
MIT OpenCourseWare (OCW) Free Physical Sciences Infor Information control Information Theory Nutrition Vectors

Applies solid mechanics to analysis of high-technology structures. Structural design considerations. Review of three-dimensional elasticity theory; stress, strain, anisotropic materials, and heating effects. Two-dimensional plane stress and plane strain problems. Torsion theory for arbitrary sections. Bending of unsymmetrical section and mixed material beams. Bending, shear, and torsion of thin-wall shell beams. Buckling of columns and stability phenomena. Introduction to structural dynamics. Exercises in the design of general and aerospace structures.

Starts : 2016-02-01
14 votes
MIT OpenCourseWare (OCW) Free Physical Sciences Infor Information environments Information Theory Nutrition Vectors

This course covers important concepts and techniques in designing and operating safety-critical systems. Topics include the nature of risk, formal accident and human error models, causes of accidents, fundamental concepts of system safety engineering, system and software hazard analysis, designing for safety, fault tolerance, safety issues in the design of human-machine interaction, verification of safety, creating a safety culture, and management of safety-critical projects. Includes a class project involving the high-level system design and analysis of a safety-critical system.

Starts : 2005-02-01
7 votes
MIT OpenCourseWare (OCW) Free Physical Sciences Infor Information control Information Theory Nutrition Vectors

This course introduces analysis techniques for complex structures and the role of material properties in structural design, failure, and longevity. Students will learn about the energy principles in structural analysis and their applications to statically-indeterminate structures and solid continua. Additionally, the course will examine matrix and finite-element methods of structured analysis including bars, beams, and two-dimensional plane stress elements. Structural materials and their properties will be considered, as will metals and composites. Other topics include modes of structural failure, criteria for yielding and fracture, crack formation and fracture mechanics, and fatigue and design for longevity. Students are expected to apply these concepts to their own structural design projects.

Starts : 2009-09-01
15 votes
MIT OpenCourseWare (OCW) Free Physical Sciences Infor Information control Information Theory Nutrition Vectors

Numerous recent studies have shown that the U.S. has relatively low percentages of students who enter science and engineering and a high drop-out rate. Some other countries are producing many more scientists and engineers per capita than the U.S. What does this mean for the future of the U.S. and the global economy?

In this readings and discussion-based seminar you will meet weekly with the Dean of Undergraduate Education to explore the kind of education MIT and other institutions are and should be giving. Based on data from National Academy and other reports, along with what pundits have been saying, we'll see if we can decide how much the U.S. may or may not be at risk.

Starts : 2005-09-01
17 votes
MIT OpenCourseWare (OCW) Free Physical Sciences Infor Information control Information Theory Nutrition Vectors

The basic objective of Unified Engineering is to give a solid understanding of the fundamental disciplines of aerospace engineering, as well as their interrelationships and applications. These disciplines are Materials and Structures (M); Computers and Programming (C); Fluid Mechanics (F); Thermodynamics (T); Propulsion (P); and Signals and Systems (S). In choosing to teach these subjects in a unified manner, the instructors seek to explain the common intellectual threads in these disciplines, as well as their combined application to solve engineering Systems Problems (SP). Throughout the year, the instructors emphasize the connections among the disciplines.

Starts : 2004-02-01
14 votes
MIT OpenCourseWare (OCW) Free Physical Sciences Infor Information control Information Theory JaverianaX Nutrition Reading assessment reading comprehension

In this course, we will look at many important aspects of the circulation of the atmosphere and ocean, from length scales of meters to thousands of km and time scales ranging from seconds to years. We will assume familiarity with concepts covered in course 12.003 (Physics of the Fluid Earth). In the early stages of the present course, we will make somewhat greater use of math than did 12.003, but the math we will use is no more than that encountered in elementary electromagnetic field theory, for example. The focus of the course is on the physics of the phenomena which we will discuss.

Starts : 2007-02-01
16 votes
MIT OpenCourseWare (OCW) Free Physical Sciences Calculus I Infor Information control Information Theory Nutrition

This freshman-level course is the second semester of introductory physics. The focus is on electricity and magnetism. The subject is taught using the TEAL (Technology Enabled Active Learning) format which utilizes small group interaction and current technology. The TEAL/Studio Project at MIT is a new approach to physics education designed to help students develop much better intuition about, and conceptual models of, physical phenomena.

Staff List

Visualizations:
Prof. John Belcher

Instructors:
Dr. Peter Dourmashkin
Prof. Bruce Knuteson
Prof. Gunther Roland
Prof. Bolek Wyslouch
Dr. Brian Wecht
Prof. Eric Katsavounidis
Prof. Robert Simcoe
Prof. Joseph Formaggio

Course Co-Administrators:
Dr. Peter Dourmashkin
Prof. Robert Redwine

Technical Instructors:
Andy Neely
Matthew Strafuss

Course Material:
Dr. Peter Dourmashkin
Prof. Eric Hudson
Dr. Sen-Ben Liao

 

Acknowledgements

The TEAL project is supported by The Alex and Brit d'Arbeloff Fund for Excellence in MIT Education, MIT iCampus, the Davis Educational Foundation, the National Science Foundation, the Class of 1960 Endowment for Innovation in Education, the Class of 1951 Fund for Excellence in Education, the Class of 1955 Fund for Excellence in Teaching, and the Helena Foundation. Many people have contributed to the development of the course materials. (PDF)

Trusted paper writing service WriteMyPaper.Today will write the papers of any difficulty.